Show commands: SageMath
Rank
The elliptic curves in class 5390c have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 5390c do not have complex multiplication.Modular form 5390.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 5390c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 5390.i4 | 5390c1 | \([1, -1, 0, -592370, 211359700]\) | \(-195395722614328041/50730248800000\) | \(-5968363041071200000\) | \([2]\) | \(122880\) | \(2.3198\) | \(\Gamma_0(N)\)-optimal |
| 5390.i3 | 5390c2 | \([1, -1, 0, -10004290, 12181439556]\) | \(941226862950447171561/45393906250000\) | \(5340547676406250000\) | \([2, 2]\) | \(245760\) | \(2.6664\) | |
| 5390.i2 | 5390c3 | \([1, -1, 0, -10532510, 10824019800]\) | \(1098325674097093229481/205612182617187500\) | \(24190067672729492187500\) | \([2]\) | \(491520\) | \(3.0130\) | |
| 5390.i1 | 5390c4 | \([1, -1, 0, -160066790, 779511027056]\) | \(3855131356812007128171561/8967612500\) | \(1055030643012500\) | \([2]\) | \(491520\) | \(3.0130\) |