Properties

Label 5390c
Number of curves $4$
Conductor $5390$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5390c have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5390c do not have complex multiplication.

Modular form 5390.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} - 3 q^{9} + q^{10} - q^{11} - 2 q^{13} + q^{16} - 6 q^{17} + 3 q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5390c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5390.i4 5390c1 \([1, -1, 0, -592370, 211359700]\) \(-195395722614328041/50730248800000\) \(-5968363041071200000\) \([2]\) \(122880\) \(2.3198\) \(\Gamma_0(N)\)-optimal
5390.i3 5390c2 \([1, -1, 0, -10004290, 12181439556]\) \(941226862950447171561/45393906250000\) \(5340547676406250000\) \([2, 2]\) \(245760\) \(2.6664\)  
5390.i2 5390c3 \([1, -1, 0, -10532510, 10824019800]\) \(1098325674097093229481/205612182617187500\) \(24190067672729492187500\) \([2]\) \(491520\) \(3.0130\)  
5390.i1 5390c4 \([1, -1, 0, -160066790, 779511027056]\) \(3855131356812007128171561/8967612500\) \(1055030643012500\) \([2]\) \(491520\) \(3.0130\)