Properties

Label 5390.r
Number of curves $4$
Conductor $5390$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5390.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5390.r do not have complex multiplication.

Modular form 5390.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} - q^{8} + q^{9} - q^{10} - q^{11} + 2 q^{12} - 2 q^{13} + 2 q^{15} + q^{16} + 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5390.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5390.r1 5390p4 \([1, 1, 0, -766777, -199746651]\) \(423783056881319689/99207416000000\) \(11671653284984000000\) \([2]\) \(165888\) \(2.3705\)  
5390.r2 5390p2 \([1, 1, 0, -717042, -234002404]\) \(346553430870203929/8300600\) \(976557289400\) \([2]\) \(55296\) \(1.8212\)  
5390.r3 5390p1 \([1, 1, 0, -44762, -3679276]\) \(-84309998289049/414124480\) \(-48721330947520\) \([2]\) \(27648\) \(1.4746\) \(\Gamma_0(N)\)-optimal
5390.r4 5390p3 \([1, 1, 0, 111303, -19389019]\) \(1296134247276791/2137096192000\) \(-251427229892608000\) \([2]\) \(82944\) \(2.0239\)