Properties

Label 53235.bg
Number of curves $4$
Conductor $53235$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 53235.bg have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 53235.bg do not have complex multiplication.

Modular form 53235.2.a.bg

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + q^{5} - q^{7} - 3 q^{8} + q^{10} - q^{14} - q^{16} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 53235.bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
53235.bg1 53235bc4 \([1, -1, 0, -171144, 27292383]\) \(157551496201/13125\) \(46183511863125\) \([2]\) \(245760\) \(1.6658\)  
53235.bg2 53235bc2 \([1, -1, 0, -11439, 366120]\) \(47045881/11025\) \(38794149965025\) \([2, 2]\) \(122880\) \(1.3192\)  
53235.bg3 53235bc1 \([1, -1, 0, -3834, -85617]\) \(1771561/105\) \(369468094905\) \([2]\) \(61440\) \(0.97267\) \(\Gamma_0(N)\)-optimal
53235.bg4 53235bc3 \([1, -1, 0, 26586, 2259765]\) \(590589719/972405\) \(-3421644026915205\) \([2]\) \(245760\) \(1.6658\)