Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-19233x+4845663\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-19233xz^2+4845663z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1557900x+3537162000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-57, 2400)$ | $0.95440925556839010486234363027$ | $\infty$ |
$(-207, 0)$ | $0$ | $2$ |
Integral points
\( \left(-207, 0\right) \), \((-57,\pm 2400)\), \((117,\pm 2052)\), \((519,\pm 11616)\)
Invariants
Conductor: | $N$ | = | \( 52800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-9715064832000000$ | = | $-1 \cdot 2^{19} \cdot 3^{4} \cdot 5^{6} \cdot 11^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{192100033}{2371842} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-4} \cdot 11^{-4} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7494858262062972799399710398$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.094953900850670871486256809000$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0250656507343525$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.075031570394425$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.95440925556839010486234363027$ |
|
Real period: | $\Omega$ | ≈ | $0.34691130045529089078201407944$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.2975256962527406451722113909 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.297525696 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.346911 \cdot 0.954409 \cdot 64}{2^2} \\ & \approx 5.297525696\end{aligned}$$
Modular invariants
Modular form 52800.2.a.dy
For more coefficients, see the Downloads section to the right.
Modular degree: | 393216 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | -1 | 6 | 19 | 1 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.16 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 881 & 800 \\ 620 & 561 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 824 & 685 \\ 95 & 594 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 624 & 1015 \\ 335 & 24 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 1313 & 8 \\ 1312 & 9 \end{array}\right),\left(\begin{array}{rr} 1201 & 800 \\ 580 & 561 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1314 & 1315 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 25 = 5^{2} \) |
$3$ | split multiplicative | $4$ | \( 17600 = 2^{6} \cdot 5^{2} \cdot 11 \) |
$5$ | additive | $14$ | \( 2112 = 2^{6} \cdot 3 \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 52800gp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 66b4, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2621440000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.12143831040000.12 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.12435282984960000.12 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | 16.0.109951162777600000000.3 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ord | nonsplit | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.