Properties

Label 52800.dp
Number of curves $1$
Conductor $52800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 52800.dp1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800.dp do not have complex multiplication.

Modular form 52800.2.a.dp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} + q^{9} + q^{11} - 4 q^{13} - q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 52800.dp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.dp1 52800by1 \([0, -1, 0, -76888833, 259922865537]\) \(-1963692857508260740/3452093881137\) \(-88373603357107200000000\) \([]\) \(5913600\) \(3.2963\) \(\Gamma_0(N)\)-optimal