Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-17533x-1499437\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-17533xz^2-1499437z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1420200x-1088829000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(28571/169, 1384128/2197)$ | $9.4326225441308152061373136872$ | $\infty$ |
$(163, 0)$ | $0$ | $2$ |
Integral points
\( \left(163, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 52800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-618750000000000$ | = | $-1 \cdot 2^{10} \cdot 3^{2} \cdot 5^{14} \cdot 11 $ |
|
j-invariant: | $j$ | = | \( -\frac{37256083456}{38671875} \) | = | $-1 \cdot 2^{11} \cdot 3^{-2} \cdot 5^{-8} \cdot 11^{-1} \cdot 263^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5335334967132017595174473545$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.15119189002953048103604092001$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0588833402519044$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8583324657408737$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.4326225441308152061373136872$ |
|
Real period: | $\Omega$ | ≈ | $0.19919130838542580148439232145$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.5155857042851236327525934884 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.515585704 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.199191 \cdot 9.432623 \cdot 16}{2^2} \\ & \approx 7.515585704\end{aligned}$$
Modular invariants
Modular form 52800.2.a.fj
For more coefficients, see the Downloads section to the right.
Modular degree: | 196608 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
$11$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.148 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 880 = 2^{4} \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 755 & 864 \\ 326 & 421 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 876 & 877 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 865 & 16 \\ 864 & 17 \end{array}\right),\left(\begin{array}{rr} 879 & 864 \\ 220 & 219 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 782 & 867 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 808 & 1 \\ 719 & 10 \end{array}\right),\left(\begin{array}{rr} 703 & 864 \\ 344 & 751 \end{array}\right)$.
The torsion field $K:=\Q(E[880])$ is a degree-$811008000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/880\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 275 = 5^{2} \cdot 11 \) |
$3$ | split multiplicative | $4$ | \( 17600 = 2^{6} \cdot 5^{2} \cdot 11 \) |
$5$ | additive | $18$ | \( 2112 = 2^{6} \cdot 3 \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 52800.fj
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 1320.f5, its twist by $-40$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{110}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-10}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{10})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-10}, \sqrt{11})\) | \(\Z/8\Z\) | not in database |
$8$ | 8.0.5877614223360000.259 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.23510456893440000.3 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.599695360000.6 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.6423183360000.15 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ss | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 8 | - | 1,1 | 1 | 1 | 3 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.