Properties

Label 52800.dk
Number of curves $2$
Conductor $52800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 52800.dk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800.dk do not have complex multiplication.

Modular form 52800.2.a.dk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{7} + q^{9} - q^{11} - 4 q^{13} - 7 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 52800.dk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.dk1 52800n1 \([0, -1, 0, -57793, 5370817]\) \(-3257444411545/2737152\) \(-17938199347200\) \([]\) \(230400\) \(1.4709\) \(\Gamma_0(N)\)-optimal
52800.dk2 52800n2 \([0, -1, 0, 399167, -45190463]\) \(2747555975/1932612\) \(-4947486720000000000\) \([]\) \(1152000\) \(2.2756\)