Properties

Label 52800.ct
Number of curves $1$
Conductor $52800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ct1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 52800.ct1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52800.ct do not have complex multiplication.

Modular form 52800.2.a.ct

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} + q^{11} + q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 52800.ct

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52800.ct1 52800br1 \([0, -1, 0, 3167, -4378463]\) \(137180/323433\) \(-8279884800000000\) \([]\) \(230400\) \(1.7333\) \(\Gamma_0(N)\)-optimal