Show commands: SageMath
Rank
The elliptic curves in class 52800.cp have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 52800.cp do not have complex multiplication.Modular form 52800.2.a.cp
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 52800.cp
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
52800.cp1 | 52800x4 | \([0, -1, 0, -5280033, 4671611937]\) | \(15897679904620804/2475\) | \(2534400000000\) | \([2]\) | \(786432\) | \(2.2267\) | |
52800.cp2 | 52800x6 | \([0, -1, 0, -2800033, -1767908063]\) | \(1185450336504002/26043266205\) | \(53336609187840000000\) | \([2]\) | \(1572864\) | \(2.5733\) | |
52800.cp3 | 52800x3 | \([0, -1, 0, -380033, 49511937]\) | \(5927735656804/2401490025\) | \(2459125785600000000\) | \([2, 2]\) | \(786432\) | \(2.2267\) | |
52800.cp4 | 52800x2 | \([0, -1, 0, -330033, 73061937]\) | \(15529488955216/6125625\) | \(1568160000000000\) | \([2, 2]\) | \(393216\) | \(1.8801\) | |
52800.cp5 | 52800x1 | \([0, -1, 0, -17533, 1499437]\) | \(-37256083456/38671875\) | \(-618750000000000\) | \([2]\) | \(196608\) | \(1.5335\) | \(\Gamma_0(N)\)-optimal |
52800.cp6 | 52800x5 | \([0, -1, 0, 1239967, 358931937]\) | \(102949393183198/86815346805\) | \(-177797830256640000000\) | \([4]\) | \(1572864\) | \(2.5733\) |