Properties

Label 52371.a
Number of curves $4$
Conductor $52371$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 52371.a have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(11\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 52371.a do not have complex multiplication.

Modular form 52371.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - 2 q^{5} - 4 q^{7} + 3 q^{8} + 2 q^{10} + q^{11} - 2 q^{13} + 4 q^{14} - q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 52371.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
52371.a1 52371e4 \([1, -1, 1, -697586, 224210310]\) \(347873904937/395307\) \(42660805293060867\) \([2]\) \(540672\) \(2.1044\)  
52371.a2 52371e2 \([1, -1, 1, -54851, 1566906]\) \(169112377/88209\) \(9519353247211929\) \([2, 2]\) \(270336\) \(1.7578\)  
52371.a3 52371e1 \([1, -1, 1, -31046, -2080020]\) \(30664297/297\) \(32051694435057\) \([2]\) \(135168\) \(1.4113\) \(\Gamma_0(N)\)-optimal
52371.a4 52371e3 \([1, -1, 1, 207004, 12041106]\) \(9090072503/5845851\) \(-630873501565226931\) \([2]\) \(540672\) \(2.1044\)