Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 5225a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5225.c2 | 5225a1 | \([1, 1, 0, -150, -625]\) | \(24137569/5225\) | \(81640625\) | \([2]\) | \(1536\) | \(0.23210\) | \(\Gamma_0(N)\)-optimal |
5225.c1 | 5225a2 | \([1, 1, 0, -775, 7500]\) | \(3301293169/218405\) | \(3412578125\) | \([2]\) | \(3072\) | \(0.57868\) |
Rank
sage: E.rank()
The elliptic curves in class 5225a have rank \(1\).
Complex multiplication
The elliptic curves in class 5225a do not have complex multiplication.Modular form 5225.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.