Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
5225.a1 |
5225b3 |
5225.a |
5225b |
$4$ |
$4$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( 5^{10} \cdot 11 \cdot 19^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$423936$ |
$3.213692$ |
$116256292809537371612841/15216540068579856875$ |
$[1, -1, 1, -25419730, -43387285978]$ |
\(y^2+xy+y=x^3-x^2-25419730x-43387285978\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 44.12.0.h.1, 152.12.0.?, $\ldots$ |
5225.a2 |
5225b2 |
5225.a |
5225b |
$4$ |
$4$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( 5^{14} \cdot 11^{2} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4180$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$211968$ |
$2.867115$ |
$104859453317683374662841/2223652969140625$ |
$[1, -1, 1, -24560355, -46841973478]$ |
\(y^2+xy+y=x^3-x^2-24560355x-46841973478\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 44.12.0.a.1, 76.12.0.?, 220.24.0.?, $\ldots$ |
5225.a3 |
5225b1 |
5225.a |
5225b |
$4$ |
$4$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( 5^{10} \cdot 11 \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$105984$ |
$2.520542$ |
$104857852278310619039721/47155625$ |
$[1, -1, 1, -24560230, -46842474228]$ |
\(y^2+xy+y=x^3-x^2-24560230x-46842474228\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 88.12.0.?, 152.12.0.?, $\ldots$ |
5225.a4 |
5225b4 |
5225.a |
5225b |
$4$ |
$4$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( - 5^{22} \cdot 11^{4} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$423936$ |
$3.213692$ |
$-94256762600623910012361/15323275604248046875$ |
$[1, -1, 1, -23702980, -50264614478]$ |
\(y^2+xy+y=x^3-x^2-23702980x-50264614478\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 38.6.0.b.1, 76.12.0.?, $\ldots$ |
5225.b1 |
5225c1 |
5225.b |
5225c |
$2$ |
$3$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( - 5^{6} \cdot 11^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$330$ |
$16$ |
$0$ |
$0.378462973$ |
$1$ |
|
$4$ |
$2592$ |
$0.616302$ |
$-2258403328/480491$ |
$[0, -1, 1, -683, 8268]$ |
\(y^2+y=x^3-x^2-683x+8268\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 22.2.0.a.1, 66.8.0.a.1, 330.16.0.? |
5225.b2 |
5225c2 |
5225.b |
5225c |
$2$ |
$3$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( - 5^{6} \cdot 11 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$330$ |
$16$ |
$0$ |
$1.135388919$ |
$1$ |
|
$4$ |
$7776$ |
$1.165609$ |
$790939860992/517504691$ |
$[0, -1, 1, 4817, -48107]$ |
\(y^2+y=x^3-x^2+4817x-48107\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 22.2.0.a.1, 66.8.0.a.1, 330.16.0.? |
5225.c1 |
5225a2 |
5225.c |
5225a |
$2$ |
$2$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( 5^{7} \cdot 11^{2} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4180$ |
$12$ |
$0$ |
$2.285502678$ |
$1$ |
|
$2$ |
$3072$ |
$0.578675$ |
$3301293169/218405$ |
$[1, 1, 0, -775, 7500]$ |
\(y^2+xy=x^3+x^2-775x+7500\) |
2.3.0.a.1, 10.6.0.a.1, 836.6.0.?, 4180.12.0.? |
5225.c2 |
5225a1 |
5225.c |
5225a |
$2$ |
$2$ |
\( 5^{2} \cdot 11 \cdot 19 \) |
\( 5^{8} \cdot 11 \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4180$ |
$12$ |
$0$ |
$4.571005357$ |
$1$ |
|
$1$ |
$1536$ |
$0.232102$ |
$24137569/5225$ |
$[1, 1, 0, -150, -625]$ |
\(y^2+xy=x^3+x^2-150x-625\) |
2.3.0.a.1, 20.6.0.c.1, 418.6.0.?, 4180.12.0.? |