Properties

Label 51744bz
Number of curves $1$
Conductor $51744$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 51744bz1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51744bz do not have complex multiplication.

Modular form 51744.2.a.bz

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - q^{11} + q^{13} + 2 q^{15} - 8 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 51744bz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51744.f1 51744bz1 \([0, -1, 0, -32909, 2671845]\) \(-19639251778048/3874403907\) \(-777608361750528\) \([]\) \(209664\) \(1.5803\) \(\Gamma_0(N)\)-optimal