Properties

Label 51744.bu
Number of curves $4$
Conductor $51744$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51744.bu have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51744.bu do not have complex multiplication.

Modular form 51744.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + q^{11} + 2 q^{13} - 2 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 51744.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51744.bu1 51744cr4 \([0, 1, 0, -353649, -80932545]\) \(10150654719808/19370043\) \(9334235909763072\) \([2]\) \(442368\) \(1.9539\)  
51744.bu2 51744cr3 \([0, 1, 0, -293624, 60815292]\) \(46477380430664/286446699\) \(17254485857613312\) \([2]\) \(442368\) \(1.9539\)  
51744.bu3 51744cr1 \([0, 1, 0, -29514, -352584]\) \(377619516352/211789809\) \(1594678991298624\) \([2, 2]\) \(221184\) \(1.6073\) \(\Gamma_0(N)\)-optimal
51744.bu4 51744cr2 \([0, 1, 0, 116016, -2681064]\) \(2866919053816/1712145897\) \(-103133313349710336\) \([2]\) \(442368\) \(1.9539\)