Show commands: SageMath
Rank
The elliptic curves in class 5160m have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 5160m do not have complex multiplication.Modular form 5160.2.a.m
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 5160m
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5160.n4 | 5160m1 | \([0, 1, 0, -900, 12960]\) | \(-315278049616/114259815\) | \(-29250512640\) | \([4]\) | \(4224\) | \(0.71881\) | \(\Gamma_0(N)\)-optimal |
5160.n3 | 5160m2 | \([0, 1, 0, -15480, 736128]\) | \(400649568576484/33698025\) | \(34506777600\) | \([2, 2]\) | \(8448\) | \(1.0654\) | |
5160.n2 | 5160m3 | \([0, 1, 0, -16560, 626400]\) | \(245245463376482/57692266875\) | \(118153762560000\) | \([2]\) | \(16896\) | \(1.4120\) | |
5160.n1 | 5160m4 | \([0, 1, 0, -247680, 47361888]\) | \(820480625548035842/5805\) | \(11888640\) | \([2]\) | \(16896\) | \(1.4120\) |