Properties

Label 5160a
Number of curves $1$
Conductor $5160$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5160a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5160a do not have complex multiplication.

Modular form 5160.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} + q^{9} - 5 q^{13} + q^{15} + 4 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5160a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5160.f1 5160a1 \([0, -1, 0, -1096, -13844]\) \(-71157653138/1410615\) \(-2888939520\) \([]\) \(2816\) \(0.60820\) \(\Gamma_0(N)\)-optimal