Properties

Label 51600.dq
Number of curves $4$
Conductor $51600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51600.dq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51600.dq do not have complex multiplication.

Modular form 51600.2.a.dq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} + q^{9} + 6 q^{11} - 2 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 51600.dq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51600.dq1 51600di4 \([0, 1, 0, -2073008, 990587988]\) \(15393836938735081/2275690697640\) \(145644204648960000000\) \([2]\) \(1658880\) \(2.5936\)  
51600.dq2 51600di3 \([0, 1, 0, -1993008, 1082267988]\) \(13679527032530281/381633600\) \(24424550400000000\) \([2]\) \(829440\) \(2.2471\)  
51600.dq3 51600di2 \([0, 1, 0, -543008, -154032012]\) \(276670733768281/336980250\) \(21566736000000000\) \([2]\) \(552960\) \(2.0443\)  
51600.dq4 51600di1 \([0, 1, 0, -43008, -1032012]\) \(137467988281/72562500\) \(4644000000000000\) \([2]\) \(276480\) \(1.6978\) \(\Gamma_0(N)\)-optimal