Properties

Label 51376j
Number of curves $1$
Conductor $51376$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 51376j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51376j do not have complex multiplication.

Modular form 51376.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} - 2 q^{9} + 2 q^{11} + q^{15} - 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 51376j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51376.h1 51376j1 \([0, -1, 0, -27096, 4602064]\) \(-101306/361\) \(-7840203312441344\) \([]\) \(209664\) \(1.7357\) \(\Gamma_0(N)\)-optimal