Properties

Label 51376a
Number of curves $1$
Conductor $51376$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 51376a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51376a do not have complex multiplication.

Modular form 51376.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - 3 q^{9} - 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 51376a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51376.q1 51376a1 \([0, 0, 0, -3056027, -2066616838]\) \(-22359484836/130321\) \(-18397037072643613696\) \([]\) \(938496\) \(2.5375\) \(\Gamma_0(N)\)-optimal