Properties

Label 51.a
Number of curves $2$
Conductor $51$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51.a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51.a do not have complex multiplication.

Modular form 51.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{4} + 3 q^{5} - 4 q^{7} + q^{9} - 3 q^{11} - 2 q^{12} - q^{13} + 3 q^{15} + 4 q^{16} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 51.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51.a1 51a2 \([0, 1, 1, -59, -196]\) \(-23100424192/14739\) \(-14739\) \([]\) \(6\) \(-0.25922\)  
51.a2 51a1 \([0, 1, 1, 1, -1]\) \(32768/459\) \(-459\) \([3]\) \(2\) \(-0.80853\) \(\Gamma_0(N)\)-optimal