Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-39594506856x-3216060481591756\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-39594506856xz^2-3216060481591756z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-3207155055363x-2344498469615224062\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2892159932218096529741072048720770188894290059923239705750642716/2372204429068732609006088037686913956399785106744339903649, 153311475300463462183024892844429345471065836724367385786059882205587719103657319423571619513670/115538884081158550977745515401755800843038029536348582403987333883225635419213888031857)$ | $142.77207250998328087825679654$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 50960 \) | = | $2^{4} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-495467755015204127475590443827200$ | = | $-1 \cdot 2^{75} \cdot 5^{2} \cdot 7^{9} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( -\frac{14245586655234650511684983641}{1028175397808386133196800} \) | = | $-1 \cdot 2^{-63} \cdot 5^{-2} \cdot 7^{-3} \cdot 13^{-1} \cdot 61^{3} \cdot 97^{3} \cdot 409693^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.0232500325594183571184578365$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.3571477774718163951485493433$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0476037319513174$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.836387192865338$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $142.77207250998328087825679654$ |
|
| Real period: | $\Omega$ | ≈ | $0.0053291822906178391661540437242$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.0868672033200714150572360390 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.086867203 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.005329 \cdot 142.772073 \cdot 8}{1^2} \\ & \approx 6.086867203\end{aligned}$$
Modular invariants
Modular form 50960.2.a.bn
For more coefficients, see the Downloads section to the right.
| Modular degree: | 219469824 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{67}^{*}$ | additive | -1 | 4 | 75 | 63 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $3$ | 3B | 9.12.0.1 | $12$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6552 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 10 & 9 \\ 3267 & 6544 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2798 & 6543 \\ 4689 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 4915 & 3294 \\ 0 & 4187 \end{array}\right),\left(\begin{array}{rr} 4913 & 6534 \\ 0 & 6551 \end{array}\right),\left(\begin{array}{rr} 6064 & 9 \\ 3663 & 76 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 6535 & 18 \\ 6534 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[6552])$ is a degree-$2191186722816$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6552\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 637 = 7^{2} \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 10192 = 2^{4} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 1040 = 2^{4} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 50960v
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 910e3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-21}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.728.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.385828352.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.3526712280000.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.12340671610176.3 | \(\Z/9\Z\) | not in database |
| $6$ | 6.0.1602671616.6 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/9\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.2.30363843385051254952001107918848000000000000.1 | \(\Z/6\Z\) | not in database |
| $18$ | 18.0.1300957292168033308902745704359814516204109824.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | nonsplit | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3 | 5 | - | 3 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 2 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.