| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 910.e1 |
910e3 |
910.e |
910e |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.24.0.3 |
3B.1.2 |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$190512$ |
$3.357147$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$9.53171$ |
$[1, 0, 1, -50503198, -146507820272]$ |
\(y^2+xy+y=x^3-50503198x-146507820272\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 117.72.0.?, 728.2.0.?, 2184.16.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 4550.r1 |
4550p3 |
4550.r |
4550p |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{63} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$4572288$ |
$4.161865$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.85687$ |
$[1, 1, 1, -1262579938, -18313477533969]$ |
\(y^2+xy+y=x^3+x^2-1262579938x-18313477533969\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 6370.b1 |
6370b3 |
6370.b |
6370b |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$9144576$ |
$4.330101$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.74713$ |
$[1, 1, 0, -2474656678, 50249707696532]$ |
\(y^2+xy=x^3+x^2-2474656678x+50249707696532\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 63.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 7280.g1 |
7280u3 |
7280.g |
7280u |
$3$ |
$9$ |
\( 2^{4} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{75} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4572288$ |
$4.050293$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.23822$ |
$[0, -1, 0, -808051160, 9376500497392]$ |
\(y^2=x^3-x^2-808051160x+9376500497392\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 8190.bi1 |
8190bl3 |
8190.bi |
8190bl |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{63} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.1 |
3B.1.1 |
$6552$ |
$144$ |
$3$ |
$3.033771373$ |
$1$ |
|
$4$ |
$5715360$ |
$3.906452$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.93897$ |
$[1, -1, 1, -454528778, 3955711147337]$ |
\(y^2+xy+y=x^3-x^2-454528778x+3955711147337\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 117.72.0.?, 728.2.0.?, 2184.16.0.?, $\ldots$ |
$[(-22127, 1794103)]$ |
$1$ |
| 11830.u1 |
11830p3 |
11830.u |
11830p |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$32006016$ |
$4.639626$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.56580$ |
$[1, 0, 0, -8535040381, -321869146096655]$ |
\(y^2+xy=x^3-8535040381x-321869146096655\) |
3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.2, 117.72.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 29120.t1 |
29120g3 |
29120.t |
29120g |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$36578304$ |
$4.396866$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.53177$ |
$[0, -1, 0, -3232204641, -75008771774495]$ |
\(y^2=x^3-x^2-3232204641x-75008771774495\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 29120.br1 |
29120bh3 |
29120.br |
29120bh |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$36578304$ |
$4.396866$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.53177$ |
$[0, 1, 0, -3232204641, 75008771774495]$ |
\(y^2=x^3+x^2-3232204641x+75008771774495\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 31850.cg1 |
31850bx3 |
31850.cg |
31850bx |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{63} \cdot 5^{8} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$219469824$ |
$5.134819$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.32072$ |
$[1, 0, 0, -61866416963, 6281337194900417]$ |
\(y^2+xy=x^3-61866416963x+6281337194900417\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 117.36.0.?, 315.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 36400.cd1 |
36400bs3 |
36400.cd |
36400bs |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{75} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$15.20969828$ |
$1$ |
|
$0$ |
$109734912$ |
$4.855011$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.89522$ |
$[0, 1, 0, -20201279008, 1172022159615988]$ |
\(y^2=x^3+x^2-20201279008x+1172022159615988\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.1, 117.36.0.?, 180.24.0.?, $\ldots$ |
$[(15874862756122/4863, 61941903667285196800/4863)]$ |
$1$ |
| 40950.bf1 |
40950u3 |
40950.bf |
40950u |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{63} \cdot 3^{6} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$49$ |
$7$ |
$0$ |
$137168640$ |
$4.711174$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.64513$ |
$[1, -1, 0, -11363219442, 494452530197716]$ |
\(y^2+xy=x^3-x^2-11363219442x+494452530197716\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 50960.bn1 |
50960v3 |
50960.bn |
50960v |
$3$ |
$9$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{75} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$142.7720725$ |
$1$ |
|
$0$ |
$219469824$ |
$5.023247$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.83639$ |
$[0, 1, 0, -39594506856, -3216060481591756]$ |
\(y^2=x^3+x^2-39594506856x-3216060481591756\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 252.24.0.?, $\ldots$ |
$[(2892159932218096529741072048720770188894290059923239705750642716/48705281326245643696931632593, 153311475300463462183024892844429345471065836724367385786059882205587719103657319423571619513670/48705281326245643696931632593)]$ |
$1$ |
| 57330.fc1 |
57330ey3 |
57330.fc |
57330ey |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{63} \cdot 3^{6} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$3.550955026$ |
$1$ |
|
$2$ |
$274337280$ |
$4.879410$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.59461$ |
$[1, -1, 1, -22271910107, -1356764379716469]$ |
\(y^2+xy+y=x^3-x^2-22271910107x-1356764379716469\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 63.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[(405771, 237317754)]$ |
$1$ |
| 59150.n1 |
59150m3 |
59150.n |
59150m |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{63} \cdot 5^{8} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$768144384$ |
$5.444344$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.18998$ |
$[1, 1, 0, -213376009525, -40233643262081875]$ |
\(y^2+xy=x^3+x^2-213376009525x-40233643262081875\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 195.8.0.?, 585.72.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 65520.f1 |
65520ct3 |
65520.f |
65520ct |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{75} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$137168640$ |
$4.599602$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.20040$ |
$[0, 0, 0, -7272460443, -253158240969142]$ |
\(y^2=x^3-7272460443x-253158240969142\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 82810.bz1 |
82810cn3 |
82810.bz |
82810cn |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1536288768$ |
$5.612579$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$8.12491$ |
$[1, 1, 1, -418216978670, 110400698894173995]$ |
\(y^2+xy+y=x^3+x^2-418216978670x+110400698894173995\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 94640.v1 |
94640ce3 |
94640.v |
94640ce |
$3$ |
$9$ |
\( 2^{4} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{75} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$4.044514140$ |
$1$ |
|
$0$ |
$768144384$ |
$5.332771$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.73717$ |
$[0, -1, 0, -136560646096, 20599625350185920]$ |
\(y^2=x^3-x^2-136560646096x+20599625350185920\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 156.8.0.?, 168.8.0.?, $\ldots$ |
$[(1116448696/59, 20323785244672/59)]$ |
$1$ |
| 106470.bx1 |
106470cl3 |
106470.bx |
106470cl |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{63} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$31.74259516$ |
$1$ |
|
$0$ |
$960180480$ |
$5.188927$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.50933$ |
$[1, -1, 0, -76815363429, 8690466944609685]$ |
\(y^2+xy=x^3-x^2-76815363429x+8690466944609685\) |
3.4.0.a.1, 9.12.0.a.1, 39.8.0-3.a.1.1, 117.72.0.?, 168.8.0.?, $\ldots$ |
$[(3261089406728461/63044, 176728050506918825522323/63044)]$ |
$1$ |
| 110110.cn1 |
110110ch3 |
110110.cn |
110110ch |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 11^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$72072$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$257191200$ |
$4.556099$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.83345$ |
$[1, 0, 0, -6110886900, 194995797894800]$ |
\(y^2+xy=x^3-6110886900x+194995797894800\) |
3.4.0.a.1, 9.12.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 145600.cw1 |
145600ba3 |
145600.cw |
145600ba |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$877879296$ |
$5.201584$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.32440$ |
$[0, -1, 0, -80805116033, 9376258082043937]$ |
\(y^2=x^3-x^2-80805116033x+9376258082043937\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 120.8.0.?, 360.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 145600.fh1 |
145600gx3 |
145600.fh |
145600gx |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$877879296$ |
$5.201584$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.32440$ |
$[0, 1, 0, -80805116033, -9376258082043937]$ |
\(y^2=x^3+x^2-80805116033x-9376258082043937\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 120.8.0.?, 360.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 203840.cb1 |
203840w3 |
203840.cb |
203840w |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$6.556231612$ |
$9$ |
$3$ |
$0$ |
$1755758592$ |
$5.369827$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.28795$ |
$[0, -1, 0, -158378027425, -25728325474706623]$ |
\(y^2=x^3-x^2-158378027425x-25728325474706623\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 156.8.0.?, 168.8.0.?, $\ldots$ |
$[(1948194013/31, 84181359001600/31)]$ |
$1$ |
| 203840.en1 |
203840fd3 |
203840.en |
203840fd |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1755758592$ |
$5.369827$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.28795$ |
$[0, 1, 0, -158378027425, 25728325474706623]$ |
\(y^2=x^3+x^2-158378027425x+25728325474706623\) |
3.4.0.a.1, 9.12.0.a.1, 78.8.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 254800.cs1 |
254800cs3 |
254800.cs |
254800cs |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{75} \cdot 5^{8} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$36$ |
$2, 3$ |
$0$ |
$5267275776$ |
$5.827972$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.59896$ |
$[0, -1, 0, -989862671408, -402005580473626688]$ |
\(y^2=x^3-x^2-989862671408x-402005580473626688\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 420.8.0.?, 728.2.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 262080.jt1 |
262080jt3 |
262080.jt |
262080jt |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$81$ |
$3$ |
$0$ |
$1097349120$ |
$4.946175$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.73368$ |
$[0, 0, 0, -29089841772, -2025265927753136]$ |
\(y^2=x^3-29089841772x-2025265927753136\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 262080.kx1 |
262080kx3 |
262080.kx |
262080kx |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{81} \cdot 3^{6} \cdot 5^{2} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1097349120$ |
$4.946175$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.73368$ |
$[0, 0, 0, -29089841772, 2025265927753136]$ |
\(y^2=x^3-29089841772x+2025265927753136\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 72.24.0.?, 117.36.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 262990.d1 |
262990d3 |
262990.d |
262990d |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 17^{2} \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 13 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$111384$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$877879296$ |
$4.773758$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.56602$ |
$[1, 1, 0, -14595424083, -719778325571027]$ |
\(y^2+xy=x^3+x^2-14595424083x-719778325571027\) |
3.4.0.a.1, 9.12.0.a.1, 51.8.0-3.a.1.1, 117.36.0.?, 153.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 286650.gq1 |
286650gq3 |
286650.gq |
286650gq |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{63} \cdot 3^{6} \cdot 5^{8} \cdot 7^{9} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$225$ |
$3, 5$ |
$0$ |
$6584094720$ |
$5.684128$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.39037$ |
$[1, -1, 0, -556797752667, -169596104262311259]$ |
\(y^2+xy=x^3-x^2-556797752667x-169596104262311259\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 117.36.0.?, 315.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 327600.ip1 |
327600ip3 |
327600.ip |
327600ip |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{75} \cdot 3^{6} \cdot 5^{8} \cdot 7^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3292047360$ |
$5.404320$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.04827$ |
$[0, 0, 0, -181811511075, -31644780121142750]$ |
\(y^2=x^3-181811511075x-31644780121142750\) |
3.4.0.a.1, 9.12.0.a.1, 60.8.0-3.a.1.2, 117.36.0.?, 180.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 328510.bh1 |
328510bh3 |
328510.bh |
328510bh |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 19^{2} \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 13 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$124488$ |
$144$ |
$3$ |
$0.746781258$ |
$1$ |
|
$2$ |
$1357969536$ |
$4.829369$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.50357$ |
$[1, 1, 1, -18231654305, 1004860675935327]$ |
\(y^2+xy+y=x^3+x^2-18231654305x+1004860675935327\) |
3.4.0.a.1, 9.12.0.a.1, 57.8.0-3.a.1.2, 117.36.0.?, 171.24.0.?, $\ldots$ |
$[(18751, 25867104)]$ |
$1$ |
| 378560.cr1 |
378560cr3 |
378560.cr |
378560cr |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$81$ |
$3$ |
$0$ |
$6145155072$ |
$5.679344$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.22588$ |
$[0, -1, 0, -546242584385, -164796456558902975]$ |
\(y^2=x^3-x^2-546242584385x-164796456558902975\) |
3.4.0.a.1, 9.12.0.a.1, 42.8.0-3.a.1.1, 117.36.0.?, 126.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 378560.hl1 |
378560hl3 |
378560.hl |
378560hl |
$3$ |
$9$ |
\( 2^{6} \cdot 5 \cdot 7 \cdot 13^{2} \) |
\( - 2^{81} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6145155072$ |
$5.679344$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.22588$ |
$[0, 1, 0, -546242584385, 164796456558902975]$ |
\(y^2=x^3+x^2-546242584385x+164796456558902975\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 252.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 414050.cv1 |
414050cv3 |
414050.cv |
414050cv |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{63} \cdot 5^{8} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$25$ |
$5$ |
$0$ |
$36870930432$ |
$6.417297$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.86049$ |
$[1, 0, 1, -10455424466751, 13800108272620682898]$ |
\(y^2+xy+y=x^3-10455424466751x+13800108272620682898\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 120.8.0.?, 360.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 458640.ix1 |
458640ix3 |
458640.ix |
458640ix |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{75} \cdot 3^{6} \cdot 5^{2} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$67.58820866$ |
$1$ |
|
$0$ |
$6584094720$ |
$5.572556$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.02121$ |
$[0, 0, 0, -356350561707, 86833276652415706]$ |
\(y^2=x^3-356350561707x+86833276652415706\) |
3.4.0.a.1, 9.12.0.a.1, 84.8.0.?, 117.36.0.?, 252.24.0.?, $\ldots$ |
$[(-72231811629035080144949219391696123/328831630396441, 5819836885207490483048821596541373807687295052021760/328831630396441)]$ |
$1$ |
| 473200.ez1 |
473200ez3 |
473200.ez |
473200ez |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 2^{75} \cdot 5^{8} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$32760$ |
$144$ |
$3$ |
$1$ |
$25$ |
$5$ |
$0$ |
$18435465216$ |
$6.137489$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$7.52321$ |
$[0, 1, 0, -3414016152408, 2574946340740935188]$ |
\(y^2=x^3+x^2-3414016152408x+2574946340740935188\) |
3.4.0.a.1, 9.12.0.a.1, 117.36.0.?, 728.2.0.?, 780.8.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 481390.x1 |
481390x3 |
481390.x |
481390x |
$3$ |
$9$ |
\( 2 \cdot 5 \cdot 7 \cdot 13 \cdot 23^{2} \) |
\( - 2^{63} \cdot 5^{2} \cdot 7^{3} \cdot 13 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$150696$ |
$144$ |
$3$ |
$186.2780618$ |
$1$ |
|
$0$ |
$2074675680$ |
$4.924896$ |
$-14245586655234650511684983641/1028175397808386133196800$ |
$1.04760$ |
$6.40125$ |
$[1, 0, 1, -26716191489, 1782507216863412]$ |
\(y^2+xy+y=x^3-26716191489x+1782507216863412\) |
3.4.0.a.1, 9.12.0.a.1, 69.8.0-3.a.1.1, 117.36.0.?, 207.24.0.?, $\ldots$ |
$[(1705549119702896413106205026736847957214529230334740695887918722084619133152991759/79932856053108996040157230010897090598, 59648514611706509112552120587673116490585629342674831391572631759332144023261049090960377709046000191602218399434693546003/79932856053108996040157230010897090598)]$ |
$1$ |