Properties

Label 50700l
Number of curves $1$
Conductor $50700$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 50700l1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50700l do not have complex multiplication.

Modular form 50700.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 3 q^{11} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 50700l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50700.m1 50700l1 \([0, -1, 0, -20230708, 30430819912]\) \(11225615440/1594323\) \(130053825029688300000000\) \([]\) \(3650400\) \(3.1610\) \(\Gamma_0(N)\)-optimal