Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-22565x+3093995\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-22565xz^2+3093995z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-29244267x+144792103014\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(915, 26920)$ | $0.28871896929231505925107371815$ | $\infty$ |
Integral points
\( \left(105, 1324\right) \), \( \left(105, -1430\right) \), \( \left(239, 3260\right) \), \( \left(239, -3500\right) \), \( \left(915, 26920\right) \), \( \left(915, -27836\right) \)
Invariants
Conductor: | $N$ | = | \( 5070 \) | = | $2 \cdot 3 \cdot 5 \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-3425285926707840$ | = | $-1 \cdot 2^{7} \cdot 3^{8} \cdot 5 \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( -\frac{1557701041}{4199040} \) | = | $-1 \cdot 2^{-7} \cdot 3^{-8} \cdot 5^{-1} \cdot 13 \cdot 17^{3} \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6682541408410236398402643515$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.041712097466667517528727276211$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9696451863535936$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.08951733420051$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.28871896929231505925107371815$ |
|
Real period: | $\Omega$ | ≈ | $0.39325965803935007889337459867$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 42 $ = $ 7\cdot2\cdot1\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.7687439716015163308577220538 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.768743972 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.393260 \cdot 0.288719 \cdot 42}{1^2} \\ & \approx 4.768743972\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 34944 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$3$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 40.2.0.a.1, level \( 40 = 2^{3} \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 21 & 2 \\ 21 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 17 & 2 \\ 17 & 3 \end{array}\right),\left(\begin{array}{rr} 31 & 2 \\ 31 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 39 & 0 \end{array}\right),\left(\begin{array}{rr} 39 & 2 \\ 38 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[40])$ is a degree-$368640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/40\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 845 = 5 \cdot 13^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 1690 = 2 \cdot 5 \cdot 13^{2} \) |
$5$ | split multiplicative | $6$ | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
$7$ | good | $2$ | \( 2535 = 3 \cdot 5 \cdot 13^{2} \) |
$13$ | additive | $74$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 5070.q consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 5070.c1, its twist by $13$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.6760.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.1827904000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.50594954670000.2 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | split | ord | ord | add | ss | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 14 | 1 | 4 | 1 | 3 | - | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 3 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.