| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 5070.c1 |
5070b1 |
5070.c |
5070b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.875420240$ |
$1$ |
|
$4$ |
$2688$ |
$0.385779$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.28556$ |
$[1, 1, 0, -133, 1357]$ |
\(y^2+xy=x^3+x^2-133x+1357\) |
40.2.0.a.1 |
$[(-11, 46)]$ |
$1$ |
| 5070.q1 |
5070r1 |
5070.q |
5070r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.288718969$ |
$1$ |
|
$6$ |
$34944$ |
$1.668255$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.08952$ |
$[1, 1, 1, -22565, 3093995]$ |
\(y^2+xy+y=x^3+x^2-22565x+3093995\) |
40.2.0.a.1 |
$[(915, 26920)]$ |
$1$ |
| 15210.c1 |
15210k1 |
15210.c |
15210k |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{14} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$279552$ |
$2.217560$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.19339$ |
$[1, -1, 0, -203085, -83740955]$ |
\(y^2+xy=x^3-x^2-203085x-83740955\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 15210.bt1 |
15210bq1 |
15210.bt |
15210bq |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{14} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$21504$ |
$0.935085$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.59524$ |
$[1, -1, 1, -1202, -37839]$ |
\(y^2+xy+y=x^3-x^2-1202x-37839\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 25350.bp1 |
25350bd1 |
25350.bp |
25350bd |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$838656$ |
$2.472973$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.23402$ |
$[1, 0, 1, -564126, 387877648]$ |
\(y^2+xy+y=x^3-564126x+387877648\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 25350.ct1 |
25350cy1 |
25350.ct |
25350cy |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.063932771$ |
$1$ |
|
$14$ |
$64512$ |
$1.190498$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.71638$ |
$[1, 0, 0, -3338, 176292]$ |
\(y^2+xy=x^3-3338x+176292\) |
40.2.0.a.1 |
$[(82, 634)]$ |
$1$ |
| 40560.bj1 |
40560ci1 |
40560.bj |
40560ci |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{8} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.549726079$ |
$1$ |
|
$6$ |
$64512$ |
$1.078926$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.42558$ |
$[0, 1, 0, -2136, -91116]$ |
\(y^2=x^3+x^2-2136x-91116\) |
40.2.0.a.1 |
$[(150, 1728)]$ |
$1$ |
| 40560.db1 |
40560cv1 |
40560.db |
40560cv |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{8} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$838656$ |
$2.361401$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.87599$ |
$[0, 1, 0, -361040, -198737772]$ |
\(y^2=x^3+x^2-361040x-198737772\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 76050.r1 |
76050bp1 |
76050.r |
76050bp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{14} \cdot 5^{7} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$1.739805$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.93960$ |
$[1, -1, 0, -30042, -4759884]$ |
\(y^2+xy=x^3-x^2-30042x-4759884\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 76050.fs1 |
76050es1 |
76050.fs |
76050es |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{14} \cdot 5^{7} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$4.327667893$ |
$1$ |
|
$2$ |
$6709248$ |
$3.022278$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.30890$ |
$[1, -1, 1, -5077130, -10472696503]$ |
\(y^2+xy+y=x^3-x^2-5077130x-10472696503\) |
40.2.0.a.1 |
$[(2949, 12475)]$ |
$1$ |
| 121680.ck1 |
121680dt1 |
121680.ck |
121680dt |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{14} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$2.784320092$ |
$1$ |
|
$2$ |
$6709248$ |
$2.910706$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.98145$ |
$[0, 0, 0, -3249363, 5362670482]$ |
\(y^2=x^3-3249363x+5362670482\) |
40.2.0.a.1 |
$[(19097, 2628288)]$ |
$1$ |
| 121680.dk1 |
121680fe1 |
121680.dk |
121680fe |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{14} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$1.628233$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.66712$ |
$[0, 0, 0, -19227, 2440906]$ |
\(y^2=x^3-19227x+2440906\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 162240.br1 |
162240ef1 |
162240.br |
162240ef |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{8} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$6709248$ |
$2.707973$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.65921$ |
$[0, -1, 0, -1444161, -1588458015]$ |
\(y^2=x^3-x^2-1444161x-1588458015\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 162240.ck1 |
162240ce1 |
162240.ck |
162240ce |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{8} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$6.428871344$ |
$1$ |
|
$2$ |
$516096$ |
$1.425501$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.37640$ |
$[0, -1, 0, -8545, -720383]$ |
\(y^2=x^3-x^2-8545x-720383\) |
40.2.0.a.1 |
$[(5512, 409131)]$ |
$1$ |
| 162240.eo1 |
162240fv1 |
162240.eo |
162240fv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{8} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6709248$ |
$2.707973$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.65921$ |
$[0, 1, 0, -1444161, 1588458015]$ |
\(y^2=x^3+x^2-1444161x+1588458015\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 162240.ia1 |
162240fn1 |
162240.ia |
162240fn |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{8} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$0.713075192$ |
$1$ |
|
$4$ |
$516096$ |
$1.425501$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.37640$ |
$[0, 1, 0, -8545, 720383]$ |
\(y^2=x^3+x^2-8545x+720383\) |
40.2.0.a.1 |
$[(83, 768)]$ |
$1$ |
| 202800.z1 |
202800eu1 |
202800.z |
202800eu |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{8} \cdot 5^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20127744$ |
$3.166119$ |
$-1557701041/4199040$ |
$0.96965$ |
$5.02403$ |
$[0, -1, 0, -9026008, -24824169488]$ |
\(y^2=x^3-x^2-9026008x-24824169488\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 202800.eu1 |
202800gm1 |
202800.eu |
202800gm |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 3^{8} \cdot 5^{7} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1548288$ |
$1.883646$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.76464$ |
$[0, -1, 0, -53408, -11282688]$ |
\(y^2=x^3-x^2-53408x-11282688\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 248430.em1 |
248430em1 |
248430.em |
248430em |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5 \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$887040$ |
$1.358734$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.19610$ |
$[1, 0, 1, -6543, -485054]$ |
\(y^2+xy+y=x^3-6543x-485054\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 248430.ir1 |
248430ir1 |
248430.ir |
248430ir |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{8} \cdot 5 \cdot 7^{6} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11531520$ |
$2.641209$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.43492$ |
$[1, 0, 0, -1105686, -1064557404]$ |
\(y^2+xy=x^3-1105686x-1064557404\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 486720.bk1 |
486720bk1 |
486720.bk |
486720bk |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{14} \cdot 5 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$3.181754318$ |
$1$ |
|
$2$ |
$4128768$ |
$1.974806$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.59650$ |
$[0, 0, 0, -76908, 19527248]$ |
\(y^2=x^3-76908x+19527248\) |
40.2.0.a.1 |
$[(506, 10496)]$ |
$1$ |
| 486720.hc1 |
486720hc1 |
486720.hc |
486720hc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{14} \cdot 5 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4128768$ |
$1.974806$ |
$-1557701041/4199040$ |
$0.96965$ |
$3.59650$ |
$[0, 0, 0, -76908, -19527248]$ |
\(y^2=x^3-76908x-19527248\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |
| 486720.jx1 |
486720jx1 |
486720.jx |
486720jx |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{14} \cdot 5 \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$31.70902073$ |
$1$ |
|
$0$ |
$53673984$ |
$3.257282$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.77170$ |
$[0, 0, 0, -12997452, -42901363856]$ |
\(y^2=x^3-12997452x-42901363856\) |
40.2.0.a.1 |
$[(3147527693914670/789353, 70159937422055728525056/789353)]$ |
$1$ |
| 486720.po1 |
486720po1 |
486720.po |
486720po |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{25} \cdot 3^{14} \cdot 5 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53673984$ |
$3.257282$ |
$-1557701041/4199040$ |
$0.96965$ |
$4.77170$ |
$[0, 0, 0, -12997452, 42901363856]$ |
\(y^2=x^3-12997452x+42901363856\) |
40.2.0.a.1 |
$[ ]$ |
$1$ |