Properties

Label 50050.p
Number of curves $4$
Conductor $50050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 50050.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50050.p do not have complex multiplication.

Modular form 50050.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{7} - q^{8} - 3 q^{9} - q^{11} + q^{13} - q^{14} + q^{16} - 6 q^{17} + 3 q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 50050.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50050.p1 50050p4 \([1, -1, 0, -57317, 4768591]\) \(1332779492447649/146356560350\) \(2286821255468750\) \([2]\) \(344064\) \(1.6806\)  
50050.p2 50050p2 \([1, -1, 0, -13567, -525159]\) \(17675559395649/2505002500\) \(39140664062500\) \([2, 2]\) \(172032\) \(1.3341\)  
50050.p3 50050p1 \([1, -1, 0, -13067, -571659]\) \(15792469779969/400400\) \(6256250000\) \([2]\) \(86016\) \(0.98750\) \(\Gamma_0(N)\)-optimal
50050.p4 50050p3 \([1, -1, 0, 22183, -2848909]\) \(77259787831071/268236718750\) \(-4191198730468750\) \([2]\) \(344064\) \(1.6806\)