Properties

Label 49818z
Number of curves $1$
Conductor $49818$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 49818z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(19\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49818z do not have complex multiplication.

Modular form 49818.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + 4 q^{7} + q^{8} + q^{9} + q^{10} - 3 q^{11} - q^{12} - 6 q^{13} + 4 q^{14} - q^{15} + q^{16} + 4 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 49818z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49818.ba1 49818z1 \([1, 1, 1, 40, -871]\) \(19575719/953856\) \(-344342016\) \([]\) \(25920\) \(0.31783\) \(\Gamma_0(N)\)-optimal