sage:E = EllipticCurve("n1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 49725.n1 has
rank \(1\).
| |
| Bad L-factors: |
| Prime |
L-Factor |
| \(3\) | \(1\) |
| \(5\) | \(1\) |
| \(13\) | \(1 + T\) |
| \(17\) | \(1 - T\) |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
| \(2\) |
\( 1 + 2 T^{2}\) |
1.2.a
|
| \(7\) |
\( 1 + 2 T + 7 T^{2}\) |
1.7.c
|
| \(11\) |
\( 1 + 2 T + 11 T^{2}\) |
1.11.c
|
| \(19\) |
\( 1 - 2 T + 19 T^{2}\) |
1.19.ac
|
| \(23\) |
\( 1 - 6 T + 23 T^{2}\) |
1.23.ag
|
| \(29\) |
\( 1 - 5 T + 29 T^{2}\) |
1.29.af
|
| $\cdots$ | $\cdots$ | $\cdots$ |
|
| |
| See L-function page for more information |
The elliptic curves in class 49725.n do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 49725.n
sage:E.isogeny_class().curves