Show commands: SageMath
Rank
The elliptic curves in class 49686.by have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 49686.by do not have complex multiplication.Modular form 49686.2.a.by
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 49686.by
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 49686.by1 | 49686cq4 | \([1, 1, 1, -587922189, -5487155647485]\) | \(18013780041269221/9216\) | \(11497962209901253632\) | \([2]\) | \(11232000\) | \(3.4254\) | |
| 49686.by2 | 49686cq3 | \([1, 1, 1, -36738829, -85779192829]\) | \(-4395631034341/3145728\) | \(-3924637767646294573056\) | \([2]\) | \(5616000\) | \(3.0789\) | |
| 49686.by3 | 49686cq2 | \([1, 1, 1, -1751604, 336963297]\) | \(476379541/236196\) | \(294680195543602051092\) | \([2]\) | \(2246400\) | \(2.6207\) | |
| 49686.by4 | 49686cq1 | \([1, 1, 1, 401456, 40702241]\) | \(5735339/3888\) | \(-4850702807302091376\) | \([2]\) | \(1123200\) | \(2.2741\) | \(\Gamma_0(N)\)-optimal |