Properties

Label 4950.bu
Number of curves $4$
Conductor $4950$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4950.bu have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4950.bu do not have complex multiplication.

Modular form 4950.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 4 q^{7} + q^{8} + q^{11} + 6 q^{13} + 4 q^{14} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4950.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4950.bu1 4950bl3 \([1, -1, 1, -79205, 8599547]\) \(4824238966273/66\) \(751781250\) \([2]\) \(16384\) \(1.2591\)  
4950.bu2 4950bl2 \([1, -1, 1, -4955, 135047]\) \(1180932193/4356\) \(49617562500\) \([2, 2]\) \(8192\) \(0.91250\)  
4950.bu3 4950bl4 \([1, -1, 1, -2705, 256547]\) \(-192100033/2371842\) \(-27016762781250\) \([2]\) \(16384\) \(1.2591\)  
4950.bu4 4950bl1 \([1, -1, 1, -455, 47]\) \(912673/528\) \(6014250000\) \([2]\) \(4096\) \(0.56592\) \(\Gamma_0(N)\)-optimal