Properties

Label 4950.2.a.bu
Level $4950$
Weight $2$
Character orbit 4950.a
Self dual yes
Analytic conductor $39.526$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4950.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(39.5259490005\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 4q^{7} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + 4q^{7} + q^{8} + q^{11} + 6q^{13} + 4q^{14} + q^{16} + 2q^{17} + 4q^{19} + q^{22} + 4q^{23} + 6q^{26} + 4q^{28} - 6q^{29} + q^{32} + 2q^{34} - 6q^{37} + 4q^{38} + 6q^{41} - 4q^{43} + q^{44} + 4q^{46} - 12q^{47} + 9q^{49} + 6q^{52} + 2q^{53} + 4q^{56} - 6q^{58} - 12q^{59} - 14q^{61} + q^{64} - 4q^{67} + 2q^{68} + 12q^{71} + 6q^{73} - 6q^{74} + 4q^{76} + 4q^{77} - 4q^{79} + 6q^{82} + 4q^{83} - 4q^{86} + q^{88} - 10q^{89} + 24q^{91} + 4q^{92} - 12q^{94} + 14q^{97} + 9q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 0 0 4.00000 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4950.2.a.bu 1
3.b odd 2 1 1650.2.a.k 1
5.b even 2 1 198.2.a.a 1
5.c odd 4 2 4950.2.c.p 2
15.d odd 2 1 66.2.a.b 1
15.e even 4 2 1650.2.c.e 2
20.d odd 2 1 1584.2.a.f 1
35.c odd 2 1 9702.2.a.x 1
40.e odd 2 1 6336.2.a.cj 1
40.f even 2 1 6336.2.a.bw 1
45.h odd 6 2 1782.2.e.e 2
45.j even 6 2 1782.2.e.v 2
55.d odd 2 1 2178.2.a.g 1
60.h even 2 1 528.2.a.j 1
105.g even 2 1 3234.2.a.t 1
120.i odd 2 1 2112.2.a.r 1
120.m even 2 1 2112.2.a.e 1
165.d even 2 1 726.2.a.c 1
165.o odd 10 4 726.2.e.g 4
165.r even 10 4 726.2.e.o 4
660.g odd 2 1 5808.2.a.bc 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 15.d odd 2 1
198.2.a.a 1 5.b even 2 1
528.2.a.j 1 60.h even 2 1
726.2.a.c 1 165.d even 2 1
726.2.e.g 4 165.o odd 10 4
726.2.e.o 4 165.r even 10 4
1584.2.a.f 1 20.d odd 2 1
1650.2.a.k 1 3.b odd 2 1
1650.2.c.e 2 15.e even 4 2
1782.2.e.e 2 45.h odd 6 2
1782.2.e.v 2 45.j even 6 2
2112.2.a.e 1 120.m even 2 1
2112.2.a.r 1 120.i odd 2 1
2178.2.a.g 1 55.d odd 2 1
3234.2.a.t 1 105.g even 2 1
4950.2.a.bu 1 1.a even 1 1 trivial
4950.2.c.p 2 5.c odd 4 2
5808.2.a.bc 1 660.g odd 2 1
6336.2.a.bw 1 40.f even 2 1
6336.2.a.cj 1 40.e odd 2 1
9702.2.a.x 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4950))\):

\( T_{7} - 4 \)
\( T_{13} - 6 \)
\( T_{17} - 2 \)
\( T_{19} - 4 \)
\( T_{23} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( T \)
$7$ \( -4 + T \)
$11$ \( -1 + T \)
$13$ \( -6 + T \)
$17$ \( -2 + T \)
$19$ \( -4 + T \)
$23$ \( -4 + T \)
$29$ \( 6 + T \)
$31$ \( T \)
$37$ \( 6 + T \)
$41$ \( -6 + T \)
$43$ \( 4 + T \)
$47$ \( 12 + T \)
$53$ \( -2 + T \)
$59$ \( 12 + T \)
$61$ \( 14 + T \)
$67$ \( 4 + T \)
$71$ \( -12 + T \)
$73$ \( -6 + T \)
$79$ \( 4 + T \)
$83$ \( -4 + T \)
$89$ \( 10 + T \)
$97$ \( -14 + T \)
show more
show less