Properties

Label 4950.g
Number of curves $4$
Conductor $4950$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4950.g have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4950.g do not have complex multiplication.

Modular form 4950.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + q^{11} + 4 q^{13} + 2 q^{14} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4950.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4950.g1 4950o3 \([1, -1, 0, -18117, 939541]\) \(57736239625/255552\) \(2910897000000\) \([2]\) \(13824\) \(1.2439\)  
4950.g2 4950o4 \([1, -1, 0, -9117, 1866541]\) \(-7357983625/127552392\) \(-1452901465125000\) \([2]\) \(27648\) \(1.5905\)  
4950.g3 4950o1 \([1, -1, 0, -1242, -15584]\) \(18609625/1188\) \(13532062500\) \([2]\) \(4608\) \(0.69464\) \(\Gamma_0(N)\)-optimal
4950.g4 4950o2 \([1, -1, 0, 1008, -67334]\) \(9938375/176418\) \(-2009511281250\) \([2]\) \(9216\) \(1.0412\)