Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-125270x-56182570\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-125270xz^2-56182570z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-162349299x-2620766926386\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2151/4, 43121/8)$ | $5.4148415359200171371864175702$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 494214 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 41^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1237282860662591526$ | = | $-1 \cdot 2 \cdot 3^{3} \cdot 7^{6} \cdot 41^{7} $ |
|
| j-invariant: | $j$ | = | \( -\frac{389017}{2214} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-3} \cdot 41^{-1} \cdot 73^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1555359064734862337680826634$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.67420520140632432071797539484$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8755235934443263$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7534928277904336$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.4148415359200171371864175702$ |
|
| Real period: | $\Omega$ | ≈ | $0.11381099445451618222283013620$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot3\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.3952220002001234855383096457 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.395222000 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.113811 \cdot 5.414842 \cdot 12}{1^2} \\ & \approx 7.395222000\end{aligned}$$
Modular invariants
Modular form 494214.2.a.bh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12096000 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $3$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $41$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6888 = 2^{3} \cdot 3 \cdot 7 \cdot 41 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 3445 & 1974 \\ 4431 & 5923 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 2951 & 0 \\ 0 & 6887 \end{array}\right),\left(\begin{array}{rr} 1511 & 4914 \\ 3549 & 965 \end{array}\right),\left(\begin{array}{rr} 6883 & 6 \\ 6882 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5167 & 1974 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5454 & 3409 \\ 3283 & 2766 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[6888])$ is a degree-$25595058585600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6888\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 247107 = 3 \cdot 7^{2} \cdot 41^{2} \) |
| $3$ | split multiplicative | $4$ | \( 164738 = 2 \cdot 7^{2} \cdot 41^{2} \) |
| $7$ | additive | $26$ | \( 10086 = 2 \cdot 3 \cdot 41^{2} \) |
| $41$ | additive | $882$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 494214.bh
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 246.d1, its twist by $-287$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.