| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 246.d1 |
246f1 |
246.d |
246f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 41 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$984$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$20$ |
$-0.674205$ |
$-389017/2214$ |
$0.87552$ |
$2.77079$ |
$[1, 0, 1, -2, 2]$ |
\(y^2+xy+y=x^3-2x+2\) |
3.8.0-3.a.1.2, 984.16.0.? |
$[ ]$ |
| 738.f1 |
738j1 |
738.f |
738j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$984$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$160$ |
$-0.124899$ |
$-389017/2214$ |
$0.87552$ |
$3.30799$ |
$[1, -1, 1, -14, -61]$ |
\(y^2+xy+y=x^3-x^2-14x-61\) |
3.8.0-3.a.1.1, 984.16.0.? |
$[ ]$ |
| 1968.g1 |
1968g1 |
1968.g |
1968g |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 41 \) |
\( - 2^{13} \cdot 3^{3} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.018942$ |
$-389017/2214$ |
$0.87552$ |
$3.10779$ |
$[0, -1, 0, -24, -144]$ |
\(y^2=x^3-x^2-24x-144\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 984.16.0.? |
$[ ]$ |
| 5904.b1 |
5904v1 |
5904.b |
5904v |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{9} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$0.231226852$ |
$1$ |
|
$24$ |
$3840$ |
$0.568248$ |
$-389017/2214$ |
$0.87552$ |
$3.47371$ |
$[0, 0, 0, -219, 4106]$ |
\(y^2=x^3-219x+4106\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 984.16.0.? |
$[(37, 216), (-11, 72)]$ |
| 6150.t1 |
6150x1 |
6150.t |
6150x |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2160$ |
$0.130514$ |
$-389017/2214$ |
$0.87552$ |
$2.85536$ |
$[1, 1, 1, -38, 281]$ |
\(y^2+xy+y=x^3+x^2-38x+281\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 984.8.0.?, 4920.16.0.? |
$[ ]$ |
| 7872.b1 |
7872e1 |
7872.b |
7872e |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$0.592269539$ |
$1$ |
|
$4$ |
$3840$ |
$0.365516$ |
$-389017/2214$ |
$0.87552$ |
$3.09113$ |
$[0, -1, 0, -97, 1249]$ |
\(y^2=x^3-x^2-97x+1249\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 246.8.0.?, 984.16.0.? |
$[(9, 32)]$ |
| 7872.s1 |
7872be1 |
7872.s |
7872be |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$0.449311126$ |
$1$ |
|
$6$ |
$3840$ |
$0.365516$ |
$-389017/2214$ |
$0.87552$ |
$3.09113$ |
$[0, 1, 0, -97, -1249]$ |
\(y^2=x^3+x^2-97x-1249\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 492.8.0.?, 984.16.0.? |
$[(23, 96)]$ |
| 10086.f1 |
10086d1 |
10086.f |
10086d |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 41^{2} \) |
\( - 2 \cdot 3^{3} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$1.369364306$ |
$1$ |
|
$0$ |
$33600$ |
$1.182581$ |
$-389017/2214$ |
$0.87552$ |
$4.07158$ |
$[1, 1, 0, -2556, 162702]$ |
\(y^2+xy=x^3+x^2-2556x+162702\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 123.8.0.?, 984.16.0.? |
$[(-193/2, 3555/2)]$ |
| 12054.b1 |
12054i1 |
12054.b |
12054i |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 7^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$1.061942573$ |
$1$ |
|
$4$ |
$7200$ |
$0.298750$ |
$-389017/2214$ |
$0.87552$ |
$2.86572$ |
$[1, 1, 0, -74, -846]$ |
\(y^2+xy=x^3+x^2-74x-846\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 984.8.0.?, 6888.16.0.? |
$[(13, 18)]$ |
| 18450.i1 |
18450q1 |
18450.i |
18450q |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 5^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1.974786509$ |
$1$ |
|
$2$ |
$17280$ |
$0.679820$ |
$-389017/2214$ |
$0.87552$ |
$3.20706$ |
$[1, -1, 0, -342, -7934]$ |
\(y^2+xy=x^3-x^2-342x-7934\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 984.8.0.?, 4920.16.0.? |
$[(35, 131)]$ |
| 23616.ce1 |
23616ch1 |
23616.ce |
23616ch |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{9} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30720$ |
$0.914822$ |
$-389017/2214$ |
$0.87552$ |
$3.40849$ |
$[0, 0, 0, -876, 32848]$ |
\(y^2=x^3-876x+32848\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 492.8.0.?, 984.16.0.? |
$[ ]$ |
| 23616.cf1 |
23616x1 |
23616.cf |
23616x |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{9} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$2.092657779$ |
$1$ |
|
$2$ |
$30720$ |
$0.914822$ |
$-389017/2214$ |
$0.87552$ |
$3.40849$ |
$[0, 0, 0, -876, -32848]$ |
\(y^2=x^3-876x-32848\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 246.8.0.?, 984.16.0.? |
$[(88, 756)]$ |
| 29766.bw1 |
29766bv1 |
29766.bw |
29766bv |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 11^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10824$ |
$16$ |
$0$ |
$3.347341595$ |
$1$ |
|
$0$ |
$21600$ |
$0.524742$ |
$-389017/2214$ |
$0.87552$ |
$2.87750$ |
$[1, 0, 0, -184, -3178]$ |
\(y^2+xy=x^3-184x-3178\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 984.8.0.?, 10824.16.0.? |
$[(271/2, 4085/2)]$ |
| 30258.i1 |
30258w1 |
30258.i |
30258w |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 41^{2} \) |
\( - 2 \cdot 3^{9} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$3.788755946$ |
$1$ |
|
$0$ |
$268800$ |
$1.731888$ |
$-389017/2214$ |
$0.87552$ |
$4.27692$ |
$[1, -1, 1, -23009, -4415961]$ |
\(y^2+xy+y=x^3-x^2-23009x-4415961\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 123.8.0.?, 984.16.0.? |
$[(10541/4, 1022787/4)]$ |
| 36162.db1 |
36162cs1 |
36162.db |
36162cs |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 7^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$0.848056$ |
$-389017/2214$ |
$0.87552$ |
$3.19379$ |
$[1, -1, 1, -671, 22173]$ |
\(y^2+xy+y=x^3-x^2-671x+22173\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 984.8.0.?, 6888.16.0.? |
$[ ]$ |
| 41574.q1 |
41574t1 |
41574.q |
41574t |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12792$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46800$ |
$0.608270$ |
$-389017/2214$ |
$0.87552$ |
$2.88135$ |
$[1, 0, 0, -257, 5199]$ |
\(y^2+xy=x^3-257x+5199\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 984.8.0.?, 12792.16.0.? |
$[ ]$ |
| 49200.dt1 |
49200cx1 |
49200.dt |
49200cx |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{3} \cdot 5^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1.695644260$ |
$1$ |
|
$4$ |
$51840$ |
$0.823661$ |
$-389017/2214$ |
$0.87552$ |
$3.07567$ |
$[0, 1, 0, -608, -19212]$ |
\(y^2=x^3+x^2-608x-19212\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 984.8.0.?, 4920.16.0.? |
$[(34, 24)]$ |
| 71094.b1 |
71094c1 |
71094.b |
71094c |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 17^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$16728$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$100800$ |
$0.742401$ |
$-389017/2214$ |
$0.87552$ |
$2.88705$ |
$[1, 1, 0, -439, 11491]$ |
\(y^2+xy=x^3+x^2-439x+11491\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 984.8.0.?, 16728.16.0.? |
$[ ]$ |
| 80688.bk1 |
80688bg1 |
80688.bk |
80688bg |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 41^{2} \) |
\( - 2^{13} \cdot 3^{3} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$3.008962277$ |
$1$ |
|
$2$ |
$806400$ |
$1.875729$ |
$-389017/2214$ |
$0.87552$ |
$4.05841$ |
$[0, 1, 0, -40904, -10494732]$ |
\(y^2=x^3+x^2-40904x-10494732\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 492.8.0.?, 984.16.0.? |
$[(8596, 796794)]$ |
| 88806.q1 |
88806q1 |
88806.q |
88806q |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 19^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$18696$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$135000$ |
$0.798015$ |
$-389017/2214$ |
$0.87552$ |
$2.88925$ |
$[1, 1, 1, -549, -16527]$ |
\(y^2+xy+y=x^3+x^2-549x-16527\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 984.8.0.?, 18696.16.0.? |
$[ ]$ |
| 89298.c1 |
89298z1 |
89298.c |
89298z |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 11^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10824$ |
$16$ |
$0$ |
$1.064796103$ |
$1$ |
|
$4$ |
$172800$ |
$1.074049$ |
$-389017/2214$ |
$0.87552$ |
$3.17842$ |
$[1, -1, 0, -1656, 85806]$ |
\(y^2+xy=x^3-x^2-1656x+85806\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 984.8.0.?, 10824.16.0.? |
$[(69, 510)]$ |
| 96432.bz1 |
96432dd1 |
96432.bz |
96432dd |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{3} \cdot 7^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$0.867198220$ |
$1$ |
|
$4$ |
$172800$ |
$0.991897$ |
$-389017/2214$ |
$0.87552$ |
$3.07124$ |
$[0, 1, 0, -1192, 51764]$ |
\(y^2=x^3+x^2-1192x+51764\) |
3.4.0.a.1, 84.8.0.?, 984.8.0.?, 6888.16.0.? |
$[(44, 294)]$ |
| 124722.y1 |
124722o1 |
124722.y |
124722o |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 13^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12792$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$374400$ |
$1.157576$ |
$-389017/2214$ |
$0.87552$ |
$3.17334$ |
$[1, -1, 0, -2313, -140373]$ |
\(y^2+xy=x^3-x^2-2313x-140373\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 984.8.0.?, 12792.16.0.? |
$[ ]$ |
| 130134.l1 |
130134l1 |
130134.l |
130134l |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 23^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 23^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$22632$ |
$16$ |
$0$ |
$1.582638022$ |
$1$ |
|
$2$ |
$237600$ |
$0.893542$ |
$-389017/2214$ |
$0.87552$ |
$2.89285$ |
$[1, 0, 1, -805, -28978]$ |
\(y^2+xy+y=x^3-805x-28978\) |
3.4.0.a.1, 69.8.0-3.a.1.2, 984.8.0.?, 22632.16.0.? |
$[(90, 748)]$ |
| 147600.ek1 |
147600cg1 |
147600.ek |
147600cg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.372967$ |
$-389017/2214$ |
$0.87552$ |
$3.34560$ |
$[0, 0, 0, -5475, 513250]$ |
\(y^2=x^3-5475x+513250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 984.8.0.?, 4920.16.0.? |
$[ ]$ |
| 196800.dz1 |
196800ey1 |
196800.dz |
196800ey |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.170235$ |
$-389017/2214$ |
$0.87552$ |
$3.06707$ |
$[0, -1, 0, -2433, -151263]$ |
\(y^2=x^3-x^2-2433x-151263\) |
3.4.0.a.1, 120.8.0.?, 984.8.0.?, 2460.8.0.?, 4920.16.0.? |
$[ ]$ |
| 196800.hc1 |
196800hd1 |
196800.hc |
196800hd |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 5^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.170235$ |
$-389017/2214$ |
$0.87552$ |
$3.06707$ |
$[0, 1, 0, -2433, 151263]$ |
\(y^2=x^3+x^2-2433x+151263\) |
3.4.0.a.1, 120.8.0.?, 984.8.0.?, 1230.8.0.?, 4920.16.0.? |
$[ ]$ |
| 206886.s1 |
206886n1 |
206886.s |
206886n |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 29^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 29^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$28536$ |
$16$ |
$0$ |
$10.39051604$ |
$1$ |
|
$0$ |
$504000$ |
$1.009443$ |
$-389017/2214$ |
$0.87552$ |
$2.89690$ |
$[1, 1, 1, -1279, 57419]$ |
\(y^2+xy+y=x^3+x^2-1279x+57419\) |
3.4.0.a.1, 87.8.0.?, 984.8.0.?, 28536.16.0.? |
$[(363367/126, 380172869/126)]$ |
| 213282.bx1 |
213282p1 |
213282.bx |
213282p |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 17^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$16728$ |
$16$ |
$0$ |
$11.68981704$ |
$1$ |
|
$0$ |
$806400$ |
$1.291708$ |
$-389017/2214$ |
$0.87552$ |
$3.16576$ |
$[1, -1, 1, -3956, -314211]$ |
\(y^2+xy+y=x^3-x^2-3956x-314211\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 984.8.0.?, 16728.16.0.? |
$[(529541/76, 109453947/76)]$ |
| 236406.h1 |
236406h1 |
236406.h |
236406h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 31^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 31^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$30504$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$613800$ |
$1.042788$ |
$-389017/2214$ |
$0.87552$ |
$2.89802$ |
$[1, 1, 0, -1461, -71397]$ |
\(y^2+xy=x^3+x^2-1461x-71397\) |
3.4.0.a.1, 93.8.0.?, 984.8.0.?, 30504.16.0.? |
$[ ]$ |
| 238128.bq1 |
238128bq1 |
238128.bq |
238128bq |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{3} \cdot 11^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10824$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$518400$ |
$1.217890$ |
$-389017/2214$ |
$0.87552$ |
$3.06604$ |
$[0, -1, 0, -2944, 203392]$ |
\(y^2=x^3-x^2-2944x+203392\) |
3.4.0.a.1, 132.8.0.?, 984.8.0.?, 10824.16.0.? |
$[ ]$ |
| 242064.h1 |
242064h1 |
242064.h |
242064h |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 41^{2} \) |
\( - 2^{13} \cdot 3^{9} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$2.793733901$ |
$1$ |
|
$2$ |
$6451200$ |
$2.425034$ |
$-389017/2214$ |
$0.87552$ |
$4.23047$ |
$[0, 0, 0, -368139, 282989626]$ |
\(y^2=x^3-368139x+282989626\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 492.8.0.?, 984.16.0.? |
$[(2829, 147928)]$ |
| 252150.cq1 |
252150cq1 |
252150.cq |
252150cq |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 41^{2} \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4920$ |
$16$ |
$0$ |
$5.933951795$ |
$1$ |
|
$0$ |
$3628800$ |
$1.987299$ |
$-389017/2214$ |
$0.87552$ |
$3.79426$ |
$[1, 0, 0, -63913, 20465567]$ |
\(y^2+xy=x^3-63913x+20465567\) |
3.4.0.a.1, 120.8.0.?, 615.8.0.?, 984.8.0.?, 4920.16.0.? |
$[(27071/14, 10178911/14)]$ |
| 266418.e1 |
266418e1 |
266418.e |
266418e |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 19^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$18696$ |
$16$ |
$0$ |
$2.830281346$ |
$1$ |
|
$2$ |
$1080000$ |
$1.347321$ |
$-389017/2214$ |
$0.87552$ |
$3.16281$ |
$[1, -1, 0, -4941, 441283]$ |
\(y^2+xy=x^3-x^2-4941x+441283\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 984.8.0.?, 18696.16.0.? |
$[(41, 533)]$ |
| 289296.fc1 |
289296fc1 |
289296.fc |
289296fc |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{9} \cdot 7^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.541203$ |
$-389017/2214$ |
$0.87552$ |
$3.32710$ |
$[0, 0, 0, -10731, -1408358]$ |
\(y^2=x^3-10731x-1408358\) |
3.4.0.a.1, 84.8.0.?, 984.8.0.?, 6888.16.0.? |
$[ ]$ |
| 301350.en1 |
301350en1 |
301350.en |
301350en |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 5^{6} \cdot 7^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$34440$ |
$16$ |
$0$ |
$7.015463251$ |
$1$ |
|
$0$ |
$777600$ |
$1.103468$ |
$-389017/2214$ |
$0.87552$ |
$2.89998$ |
$[1, 0, 0, -1863, -102033]$ |
\(y^2+xy=x^3-1863x-102033\) |
3.4.0.a.1, 105.8.0.?, 984.8.0.?, 34440.16.0.? |
$[(7667/2, 663535/2)]$ |
| 322752.h1 |
322752h1 |
322752.h |
322752h |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 41^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 41^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6451200$ |
$2.222301$ |
$-389017/2214$ |
$0.87552$ |
$3.94274$ |
$[0, -1, 0, -163617, -83794239]$ |
\(y^2=x^3-x^2-163617x-83794239\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 984.16.0.? |
$[ ]$ |
| 322752.ck1 |
322752ck1 |
322752.ck |
322752ck |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 41^{2} \) |
\( - 2^{19} \cdot 3^{3} \cdot 41^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$984$ |
$16$ |
$0$ |
$1.139888042$ |
$1$ |
|
$14$ |
$6451200$ |
$2.222301$ |
$-389017/2214$ |
$0.87552$ |
$3.94274$ |
$[0, 1, 0, -163617, 83794239]$ |
\(y^2=x^3+x^2-163617x+83794239\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 984.16.0.? |
$[(2979, 161376), (10851, 1129632)]$ |
| 332592.g1 |
332592g1 |
332592.g |
332592g |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 41 \) |
\( - 2^{13} \cdot 3^{3} \cdot 13^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12792$ |
$16$ |
$0$ |
$4.106495581$ |
$1$ |
|
$2$ |
$1123200$ |
$1.301416$ |
$-389017/2214$ |
$0.87552$ |
$3.06430$ |
$[0, -1, 0, -4112, -332736]$ |
\(y^2=x^3-x^2-4112x-332736\) |
3.4.0.a.1, 156.8.0.?, 984.8.0.?, 12792.16.0.? |
$[(240, 3528)]$ |
| 336774.s1 |
336774s1 |
336774.s |
336774s |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 37^{2} \cdot 41 \) |
\( - 2 \cdot 3^{3} \cdot 37^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$36408$ |
$16$ |
$0$ |
$2.667944752$ |
$1$ |
|
$0$ |
$1036800$ |
$1.131254$ |
$-389017/2214$ |
$0.87552$ |
$2.90085$ |
$[1, 0, 0, -2082, 120186]$ |
\(y^2+xy=x^3-2082x+120186\) |
3.4.0.a.1, 111.8.0.?, 984.8.0.?, 36408.16.0.? |
$[(419/2, 7795/2)]$ |
| 385728.dt1 |
385728dt1 |
385728.dt |
385728dt |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{6} \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$3.641241302$ |
$1$ |
|
$6$ |
$1382400$ |
$1.338470$ |
$-389017/2214$ |
$0.87552$ |
$3.06356$ |
$[0, -1, 0, -4769, 418881]$ |
\(y^2=x^3-x^2-4769x+418881\) |
3.4.0.a.1, 168.8.0.?, 984.8.0.?, 3444.8.0.?, 6888.16.0.? |
$[(285, 4704), (-35, 736)]$ |
| 385728.ik1 |
385728ik1 |
385728.ik |
385728ik |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \cdot 41 \) |
\( - 2^{19} \cdot 3^{3} \cdot 7^{6} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.338470$ |
$-389017/2214$ |
$0.87552$ |
$3.06356$ |
$[0, 1, 0, -4769, -418881]$ |
\(y^2=x^3+x^2-4769x-418881\) |
3.4.0.a.1, 168.8.0.?, 984.8.0.?, 1722.8.0.?, 6888.16.0.? |
$[ ]$ |
| 390402.bp1 |
390402bp1 |
390402.bp |
390402bp |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 23^{2} \cdot 41 \) |
\( - 2 \cdot 3^{9} \cdot 23^{6} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$22632$ |
$16$ |
$0$ |
$6.773016985$ |
$1$ |
|
$0$ |
$1900800$ |
$1.442848$ |
$-389017/2214$ |
$0.87552$ |
$3.15798$ |
$[1, -1, 1, -7241, 782399]$ |
\(y^2+xy+y=x^3-x^2-7241x+782399\) |
3.4.0.a.1, 69.8.0-3.a.1.1, 984.8.0.?, 22632.16.0.? |
$[(-8019/20, 7746161/20)]$ |
| 454854.m1 |
454854m1 |
454854.m |
454854m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 41 \cdot 43^{2} \) |
\( - 2 \cdot 3^{3} \cdot 41 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42312$ |
$16$ |
$0$ |
$4.032114089$ |
$1$ |
|
$0$ |
$1572480$ |
$1.206394$ |
$-389017/2214$ |
$0.87552$ |
$2.90314$ |
$[1, 1, 1, -2812, -190093]$ |
\(y^2+xy+y=x^3+x^2-2812x-190093\) |
3.4.0.a.1, 129.8.0.?, 984.8.0.?, 42312.16.0.? |
$[(2263/2, 104975/2)]$ |
| 494214.bh1 |
494214bh1 |
494214.bh |
494214bh |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 41^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{6} \cdot 41^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6888$ |
$16$ |
$0$ |
$5.414841535$ |
$1$ |
|
$0$ |
$12096000$ |
$2.155537$ |
$-389017/2214$ |
$0.87552$ |
$3.75349$ |
$[1, 0, 1, -125270, -56182570]$ |
\(y^2+xy+y=x^3-125270x-56182570\) |
3.4.0.a.1, 168.8.0.?, 861.8.0.?, 984.8.0.?, 6888.16.0.? |
$[(2151/2, 43121/2)]$ |