Properties

Label 49104bq
Number of curves $2$
Conductor $49104$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 49104bq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 49104bq do not have complex multiplication.

Modular form 49104.2.a.bq

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{5} + 4 q^{7} + q^{11} + 6 q^{13} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 49104bq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
49104.bv1 49104bq1 \([0, 0, 0, -9003, 44890]\) \(27027009001/15349092\) \(45832143126528\) \([2]\) \(221184\) \(1.3112\) \(\Gamma_0(N)\)-optimal
49104.bv2 49104bq2 \([0, 0, 0, 35637, 357370]\) \(1676253304439/988531038\) \(-2951737862971392\) \([2]\) \(442368\) \(1.6578\)