Show commands: SageMath
Rank
The elliptic curves in class 4884d have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 4884d do not have complex multiplication.Modular form 4884.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 4884d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4884.d1 | 4884d1 | \([0, 1, 0, -13617, -444852]\) | \(17453395699253248/4865706969453\) | \(77851311511248\) | \([2]\) | \(18432\) | \(1.3727\) | \(\Gamma_0(N)\)-optimal |
4884.d2 | 4884d2 | \([0, 1, 0, 35388, -2875500]\) | \(19144301716363952/25146684534609\) | \(-6437551240859904\) | \([2]\) | \(36864\) | \(1.7193\) |