Properties

Label 488410.u1
Conductor $488410$
Discriminant $-5.717\times 10^{29}$
j-invariant \( -\frac{1762712152495281}{171798691840} \)
CM no
Rank $0$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-x^2-3757176344x-95815305679040\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-x^2z-3757176344xz^2-95815305679040z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-60114821507x-6132239678280066\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 0, -3757176344, -95815305679040])
 
Copy content gp:E = ellinit([1, -1, 0, -3757176344, -95815305679040])
 
Copy content magma:E := EllipticCurve([1, -1, 0, -3757176344, -95815305679040]);
 
Copy content oscar:E = elliptic_curve([1, -1, 0, -3757176344, -95815305679040])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Invariants

Conductor: $N$  =  \( 488410 \) = $2 \cdot 5 \cdot 13^{2} \cdot 17^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $-571671977025154973980206039040$ = $-1 \cdot 2^{35} \cdot 5 \cdot 13^{10} \cdot 17^{6} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( -\frac{1762712152495281}{171798691840} \) = $-1 \cdot 2^{-35} \cdot 3^{3} \cdot 5^{-1} \cdot 13^{2} \cdot 7283^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $4.4508669024430362100066032216$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $0.89680243253031422317059637802$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.1377369369986685$
Szpiro ratio: $\sigma_{m}$ ≈ $5.9478269034491165$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 0$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 0$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ = $1$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.0095886637875125589293793177677$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 2 $  = $ 1\cdot1\cdot1\cdot2 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $1$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L(E,1)$ ≈ $0.93968905117623077507917314124 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  =  $49$ = $7^2$    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 0.939689051 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{49 \cdot 0.009589 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 0.939689051\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 0, -3757176344, -95815305679040]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 0, -3757176344, -95815305679040]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 488410.2.a.u

\( q - q^{2} + q^{4} + q^{5} - 3 q^{7} - q^{8} - 3 q^{9} - q^{10} - 3 q^{11} + 3 q^{14} + q^{16} + 3 q^{18} - 7 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 753392640
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $1$ $I_{35}$ nonsplit multiplicative 1 1 35 35
$5$ $1$ $I_{1}$ split multiplicative -1 1 1 1
$13$ $1$ $II^{*}$ additive 1 2 10 0
$17$ $2$ $I_0^{*}$ additive 1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$7$ 7B 7.8.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[30941, 36414, 49147, 7379], [12377, 36414, 42959, 7379], [61867, 14, 61866, 15], [22949, 3638, 27370, 21929], [8, 5, 91, 57], [1, 14, 0, 1], [15471, 36414, 2737, 7379], [1, 0, 14, 1], [58239, 0, 0, 61879], [11833, 29648, 56406, 58073]] GL(2,Integers(61880)).subgroup(gens)
 
Copy content magma:Gens := [[30941, 36414, 49147, 7379], [12377, 36414, 42959, 7379], [61867, 14, 61866, 15], [22949, 3638, 27370, 21929], [8, 5, 91, 57], [1, 14, 0, 1], [15471, 36414, 2737, 7379], [1, 0, 14, 1], [58239, 0, 0, 61879], [11833, 29648, 56406, 58073]]; sub<GL(2,Integers(61880))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 61880 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \), index $96$, genus $2$, and generators

$\left(\begin{array}{rr} 30941 & 36414 \\ 49147 & 7379 \end{array}\right),\left(\begin{array}{rr} 12377 & 36414 \\ 42959 & 7379 \end{array}\right),\left(\begin{array}{rr} 61867 & 14 \\ 61866 & 15 \end{array}\right),\left(\begin{array}{rr} 22949 & 3638 \\ 27370 & 21929 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15471 & 36414 \\ 2737 & 7379 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 58239 & 0 \\ 0 & 61879 \end{array}\right),\left(\begin{array}{rr} 11833 & 29648 \\ 56406 & 58073 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[61880])$ is a degree-$31786815392317440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/61880\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ nonsplit multiplicative $4$ \( 244205 = 5 \cdot 13^{2} \cdot 17^{2} \)
$5$ split multiplicative $6$ \( 48841 = 13^{2} \cdot 17^{2} \)
$7$ good $2$ \( 244205 = 5 \cdot 13^{2} \cdot 17^{2} \)
$13$ additive $50$ \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
$17$ additive $146$ \( 1690 = 2 \cdot 5 \cdot 13^{2} \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 7.
Its isogeny class 488410.u consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 1690.h1, its twist by $221$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.