Learn more

Refine search


Results (34 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1690.c1 1690.c \( 2 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $54.88869623$ $[1, -1, 0, -13000610, -19499343980]$ \(y^2+xy=x^3-x^2-13000610x-19499343980\) 7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? $[(686347842850937155849803/992841926, 568263844856275973907944333031281963/992841926)]$
1690.h1 1690.h \( 2 \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.259597054$ $[1, -1, 1, -76927, -8857689]$ \(y^2+xy+y=x^3-x^2-76927x-8857689\) 7.16.0-7.a.1.1, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? $[(2259, 105366)]$
8450.g1 8450.g \( 2 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $26.05127359$ $[1, -1, 0, -1923167, -1109134259]$ \(y^2+xy=x^3-x^2-1923167x-1109134259\) 7.8.0.a.1, 35.16.0-7.a.1.2, 40.2.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, $\ldots$ $[(736223979849/19001, 395685206799394138/19001)]$
8450.q1 8450.q \( 2 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -325015255, -2437743012753]$ \(y^2+xy+y=x^3-x^2-325015255x-2437743012753\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ $[ ]$
13520.m1 13520.m \( 2^{4} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -208009763, 1248166024482]$ \(y^2=x^3-208009763x+1248166024482\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ $[ ]$
13520.p1 13520.p \( 2^{4} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.315851423$ $[0, 0, 0, -1230827, 568122906]$ \(y^2=x^3-1230827x+568122906\) 7.8.0.a.1, 28.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ $[(455, 10114)]$
15210.d1 15210.d \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -692340, 239849936]$ \(y^2+xy=x^3-x^2-692340x+239849936\) 7.8.0.a.1, 21.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$ $[ ]$
15210.bs1 15210.bs \( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -117005492, 526599292951]$ \(y^2+xy+y=x^3-x^2-117005492x+526599292951\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, 280.16.0.?, $\ldots$ $[ ]$
54080.bi1 54080.bi \( 2^{6} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $34.51664954$ $[0, 0, 0, -4923308, -4544983248]$ \(y^2=x^3-4923308x-4544983248\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.3, 91.24.0.?, 140.16.0.?, $\ldots$ $[(1889924245228568/225961, 82009727163172694020420/225961)]$
54080.br1 54080.br \( 2^{6} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4923308, 4544983248]$ \(y^2=x^3-4923308x+4544983248\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.4, 70.16.0-7.a.1.1, 91.24.0.?, $\ldots$ $[ ]$
54080.bu1 54080.bu \( 2^{6} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $61.02438814$ $[0, 0, 0, -832039052, 9985328195856]$ \(y^2=x^3-832039052x+9985328195856\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[(301053546218644278868054445/104710134911, 3214722847333973509109177437735098300499/104710134911)]$
54080.cb1 54080.cb \( 2^{6} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -832039052, -9985328195856]$ \(y^2=x^3-832039052x-9985328195856\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[ ]$
67600.bt1 67600.bt \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -30770675, 71015363250]$ \(y^2=x^3-30770675x+71015363250\) 7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.7, 91.24.0.?, 140.16.0.?, $\ldots$ $[ ]$
67600.bx1 67600.bx \( 2^{4} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5200244075, 156020753060250]$ \(y^2=x^3-5200244075x+156020753060250\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ $[ ]$
76050.p1 76050.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2925137292, 65821986481616]$ \(y^2+xy=x^3-x^2-2925137292x+65821986481616\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1365.48.0.?, $\ldots$ $[ ]$
76050.fu1 76050.fu \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.411285060$ $[1, -1, 1, -17308505, 29963933497]$ \(y^2+xy+y=x^3-x^2-17308505x+29963933497\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 105.16.0.?, 168.16.0.?, $\ldots$ $[(-3161, 231980)]$
82810.z1 82810.z \( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $115.9457428$ $[1, -1, 0, -637029899, 6689549044933]$ \(y^2+xy=x^3-x^2-637029899x+6689549044933\) 7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? $[(214524432060130771517528128165376383856930722863441/69755782516559031185417, 2714184822593193430471372582684413210993624532005983605158887861539537292225/69755782516559031185417)]$
82810.cb1 82810.cb \( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.359828603$ $[1, -1, 1, -3769408, 3045726051]$ \(y^2+xy+y=x^3-x^2-3769408x+3045726051\) 7.16.0-7.a.1.2, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? $[(573, 32481)]$
121680.cj1 121680.cj \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.103258046$ $[0, 0, 0, -11077443, -15339318462]$ \(y^2=x^3-11077443x-15339318462\) 7.8.0.a.1, 40.2.0.a.1, 84.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ $[(24315057/73, 66371715072/73)]$
121680.dm1 121680.dm \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1872087867, -33700482661014]$ \(y^2=x^3-1872087867x-33700482661014\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1092.48.0.?, $\ldots$ $[ ]$
204490.z1 204490.z \( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $46.24177658$ $[1, -1, 0, -9308129, 11817508093]$ \(y^2+xy=x^3-x^2-9308129x+11817508093\) 7.8.0.a.1, 40.2.0.a.1, 77.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ $[(15143106963313341021/204084763, 781275127242505214816278527037/204084763)]$
204490.cm1 204490.cm \( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.549457185$ $[1, -1, 1, -1573073833, 25958346058857]$ \(y^2+xy+y=x^3-x^2-1573073833x+25958346058857\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1001.48.0.?, $\ldots$ $[(807495, 724358876)]$
270400.ep1 270400.ep \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -123082700, 568122906000]$ \(y^2=x^3-123082700x+568122906000\) 7.8.0.a.1, 14.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, $\ldots$ $[ ]$
270400.eq1 270400.eq \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $272.4834551$ $[0, 0, 0, -20800976300, -1248166024482000]$ \(y^2=x^3-20800976300x-1248166024482000\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ $[(165740831163989582524884024377706167454723153204505594743108155158321316445966044347056223840189979375882532254170140920/784278244421215184396035075730289260797107159616220507879, 54388330343526562664585666624497727466945639342777680693070680561114628169357659086670573734176483527426641057651750380800121913637259031052414416913547530268136876571321646350700/784278244421215184396035075730289260797107159616220507879)]$
270400.fx1 270400.fx \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -20800976300, 1248166024482000]$ \(y^2=x^3-20800976300x+1248166024482000\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, 280.16.0.?, $\ldots$ $[ ]$
270400.fy1 270400.fy \( 2^{6} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.698924362$ $[0, 0, 0, -123082700, -568122906000]$ \(y^2=x^3-123082700x-568122906000\) 7.8.0.a.1, 28.16.0-7.a.1.4, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ $[(705441230/151, 17296995123200/151)]$
414050.bl1 414050.bl \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -94235192, 380621521216]$ \(y^2+xy=x^3-x^2-94235192x+380621521216\) 7.8.0.a.1, 35.16.0-7.a.1.1, 40.2.0.a.1, 56.16.0-7.a.1.6, 91.24.0.?, $\ldots$ $[ ]$
414050.ge1 414050.ge \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $9.300310794$ $[1, -1, 1, -15925747480, 836177704869147]$ \(y^2+xy+y=x^3-x^2-15925747480x+836177704869147\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ $[(33039, 18586455)]$
486720.be1 486720.be \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $45.20619703$ $[0, 0, 0, -7488351468, -269603861288112]$ \(y^2=x^3-7488351468x-269603861288112\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ $[(98578793076084192982426/984681329, 4268971121655754806633436706504704/984681329)]$
486720.hi1 486720.hi \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -7488351468, 269603861288112]$ \(y^2=x^3-7488351468x+269603861288112\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ $[ ]$
486720.js1 486720.js \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.418307023$ $[0, 0, 0, -44309772, 122714547696]$ \(y^2=x^3-44309772x+122714547696\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 280.16.0.?, $\ldots$ $[(3044430/53, 41032876032/53)]$
486720.ps1 486720.ps \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -44309772, -122714547696]$ \(y^2=x^3-44309772x-122714547696\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 210.16.0.?, $\ldots$ $[ ]$
488410.u1 488410.u \( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3757176344, -95815305679040]$ \(y^2+xy=x^3-x^2-3757176344x-95815305679040\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1547.48.0.?, $\ldots$ $[ ]$
488410.cj1 488410.cj \( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -22231813, -43606752003]$ \(y^2+xy+y=x^3-x^2-22231813x-43606752003\) 7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 119.16.0.?, 280.16.0.?, $\ldots$ $[ ]$
  displayed columns for results