Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1690.c1 |
1690b2 |
1690.c |
1690b |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$54.88869623$ |
$1$ |
|
$0$ |
$152880$ |
$3.034260$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$8.19521$ |
$[1, -1, 0, -13000610, -19499343980]$ |
\(y^2+xy=x^3-x^2-13000610x-19499343980\) |
7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? |
$[(686347842850937155849803/992841926, 568263844856275973907944333031281963/992841926)]$ |
1690.h1 |
1690g2 |
1690.h |
1690g |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.16.0.2 |
7B.2.3 |
$3640$ |
$96$ |
$2$ |
$0.259597054$ |
$1$ |
|
$6$ |
$11760$ |
$1.751785$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.12461$ |
$[1, -1, 1, -76927, -8857689]$ |
\(y^2+xy+y=x^3-x^2-76927x-8857689\) |
7.16.0-7.a.1.1, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? |
$[(2259, 105366)]$ |
8450.g1 |
8450a2 |
8450.g |
8450a |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5^{7} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$26.05127359$ |
$1$ |
|
$0$ |
$282240$ |
$2.556503$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.10243$ |
$[1, -1, 0, -1923167, -1109134259]$ |
\(y^2+xy=x^3-x^2-1923167x-1109134259\) |
7.8.0.a.1, 35.16.0-7.a.1.2, 40.2.0.a.1, 56.16.0-7.a.1.8, 91.24.0.?, $\ldots$ |
$[(736223979849/19001, 395685206799394138/19001)]$ |
8450.q1 |
8450n2 |
8450.q |
8450n |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5^{7} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$3669120$ |
$3.838978$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$7.80447$ |
$[1, -1, 1, -325015255, -2437743012753]$ |
\(y^2+xy+y=x^3-x^2-325015255x-2437743012753\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ |
$[ ]$ |
13520.m1 |
13520o2 |
13520.m |
13520o |
$2$ |
$7$ |
\( 2^{4} \cdot 5 \cdot 13^{2} \) |
\( - 2^{47} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$3669120$ |
$3.727406$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$7.27808$ |
$[0, 0, 0, -208009763, 1248166024482]$ |
\(y^2=x^3-208009763x+1248166024482\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ |
$[ ]$ |
13520.p1 |
13520w2 |
13520.p |
13520w |
$2$ |
$7$ |
\( 2^{4} \cdot 5 \cdot 13^{2} \) |
\( - 2^{47} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$4.315851423$ |
$1$ |
|
$2$ |
$282240$ |
$2.444931$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.66014$ |
$[0, 0, 0, -1230827, 568122906]$ |
\(y^2=x^3-1230827x+568122906\) |
7.8.0.a.1, 28.16.0-7.a.1.2, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ |
$[(455, 10114)]$ |
15210.d1 |
15210l2 |
15210.d |
15210l |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{35} \cdot 3^{6} \cdot 5 \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$376320$ |
$2.301090$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.41166$ |
$[1, -1, 0, -692340, 239849936]$ |
\(y^2+xy=x^3-x^2-692340x+239849936\) |
7.8.0.a.1, 21.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, $\ldots$ |
$[ ]$ |
15210.bs1 |
15210bs2 |
15210.bs |
15210bs |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{35} \cdot 3^{6} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$4892160$ |
$3.583565$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$7.00981$ |
$[1, -1, 1, -117005492, 526599292951]$ |
\(y^2+xy+y=x^3-x^2-117005492x+526599292951\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 273.48.0.?, 280.16.0.?, $\ldots$ |
$[ ]$ |
54080.bi1 |
54080f2 |
54080.bi |
54080f |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$34.51664954$ |
$1$ |
|
$0$ |
$2257920$ |
$2.791508$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.32176$ |
$[0, 0, 0, -4923308, -4544983248]$ |
\(y^2=x^3-4923308x-4544983248\) |
7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.3, 91.24.0.?, 140.16.0.?, $\ldots$ |
$[(1889924245228568/225961, 82009727163172694020420/225961)]$ |
54080.br1 |
54080by2 |
54080.br |
54080by |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 5 \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2257920$ |
$2.791508$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.32176$ |
$[0, 0, 0, -4923308, 4544983248]$ |
\(y^2=x^3-4923308x+4544983248\) |
7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.4, 70.16.0-7.a.1.1, 91.24.0.?, $\ldots$ |
$[ ]$ |
54080.bu1 |
54080ct2 |
54080.bu |
54080ct |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 5 \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$61.02438814$ |
$1$ |
|
$0$ |
$29352960$ |
$4.073982$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.73389$ |
$[0, 0, 0, -832039052, 9985328195856]$ |
\(y^2=x^3-832039052x+9985328195856\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ |
$[(301053546218644278868054445/104710134911, 3214722847333973509109177437735098300499/104710134911)]$ |
54080.cb1 |
54080be2 |
54080.cb |
54080be |
$2$ |
$7$ |
\( 2^{6} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$29352960$ |
$4.073982$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.73389$ |
$[0, 0, 0, -832039052, -9985328195856]$ |
\(y^2=x^3-832039052x-9985328195856\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ |
$[ ]$ |
67600.bt1 |
67600bi2 |
67600.bt |
67600bi |
$2$ |
$7$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{47} \cdot 5^{7} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$6773760$ |
$3.249653$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.70932$ |
$[0, 0, 0, -30770675, 71015363250]$ |
\(y^2=x^3-30770675x+71015363250\) |
7.8.0.a.1, 40.2.0.a.1, 56.16.0-7.a.1.7, 91.24.0.?, 140.16.0.?, $\ldots$ |
$[ ]$ |
67600.bx1 |
67600bh2 |
67600.bx |
67600bh |
$2$ |
$7$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{47} \cdot 5^{7} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$88058880$ |
$4.532127$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$7.09312$ |
$[0, 0, 0, -5200244075, 156020753060250]$ |
\(y^2=x^3-5200244075x+156020753060250\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 728.48.0.?, $\ldots$ |
$[ ]$ |
76050.p1 |
76050br2 |
76050.p |
76050br |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 3^{6} \cdot 5^{7} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$117411840$ |
$4.388283$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.86521$ |
$[1, -1, 0, -2925137292, 65821986481616]$ |
\(y^2+xy=x^3-x^2-2925137292x+65821986481616\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1365.48.0.?, $\ldots$ |
$[ ]$ |
76050.fu1 |
76050et2 |
76050.fu |
76050et |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 3^{6} \cdot 5^{7} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$0.411285060$ |
$1$ |
|
$6$ |
$9031680$ |
$3.105812$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.49591$ |
$[1, -1, 1, -17308505, 29963933497]$ |
\(y^2+xy+y=x^3-x^2-17308505x+29963933497\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 105.16.0.?, 168.16.0.?, $\ldots$ |
$[(-3161, 231980)]$ |
82810.z1 |
82810bc2 |
82810.z |
82810bc |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 7^{6} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$115.9457428$ |
$1$ |
|
$0$ |
$50450400$ |
$4.007217$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.40977$ |
$[1, -1, 0, -637029899, 6689549044933]$ |
\(y^2+xy=x^3-x^2-637029899x+6689549044933\) |
7.8.0.a.1, 40.2.0.a.1, 91.48.0.?, 280.16.0.?, 3640.96.2.? |
$[(214524432060130771517528128165376383856930722863441/69755782516559031185417, 2714184822593193430471372582684413210993624532005983605158887861539537292225/69755782516559031185417)]$ |
82810.cb1 |
82810bu2 |
82810.cb |
82810bu |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.16.0.1 |
7B.2.1 |
$3640$ |
$96$ |
$2$ |
$1.359828603$ |
$1$ |
|
$4$ |
$3880800$ |
$2.724739$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.05078$ |
$[1, -1, 1, -3769408, 3045726051]$ |
\(y^2+xy+y=x^3-x^2-3769408x+3045726051\) |
7.16.0-7.a.1.2, 40.2.0.a.1, 91.48.0.?, 280.32.0.?, 3640.96.2.? |
$[(573, 32481)]$ |
121680.cj1 |
121680dv2 |
121680.cj |
121680dv |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{47} \cdot 3^{6} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$7.103258046$ |
$1$ |
|
$0$ |
$9031680$ |
$2.994240$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.16097$ |
$[0, 0, 0, -11077443, -15339318462]$ |
\(y^2=x^3-11077443x-15339318462\) |
7.8.0.a.1, 40.2.0.a.1, 84.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ |
$[(24315057/73, 66371715072/73)]$ |
121680.dm1 |
121680ff2 |
121680.dm |
121680ff |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{47} \cdot 3^{6} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$117411840$ |
$4.276711$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.47530$ |
$[0, 0, 0, -1872087867, -33700482661014]$ |
\(y^2=x^3-1872087867x-33700482661014\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1092.48.0.?, $\ldots$ |
$[ ]$ |
204490.z1 |
204490cr2 |
204490.z |
204490cr |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 11^{6} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$40040$ |
$96$ |
$2$ |
$46.24177658$ |
$1$ |
|
$0$ |
$15876000$ |
$2.950733$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$4.89917$ |
$[1, -1, 0, -9308129, 11817508093]$ |
\(y^2+xy=x^3-x^2-9308129x+11817508093\) |
7.8.0.a.1, 40.2.0.a.1, 77.16.0.?, 91.24.0.?, 280.16.0.?, $\ldots$ |
$[(15143106963313341021/204084763, 781275127242505214816278527037/204084763)]$ |
204490.cm1 |
204490ba2 |
204490.cm |
204490ba |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5 \cdot 11^{6} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$40040$ |
$96$ |
$2$ |
$7.549457185$ |
$1$ |
|
$2$ |
$206388000$ |
$4.233208$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.15771$ |
$[1, -1, 1, -1573073833, 25958346058857]$ |
\(y^2+xy+y=x^3-x^2-1573073833x+25958346058857\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1001.48.0.?, $\ldots$ |
$[(807495, 724358876)]$ |
270400.ep1 |
270400ep2 |
270400.ep |
270400ep |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{53} \cdot 5^{7} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$54190080$ |
$3.596226$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.40903$ |
$[0, 0, 0, -123082700, 568122906000]$ |
\(y^2=x^3-123082700x+568122906000\) |
7.8.0.a.1, 14.16.0-7.a.1.1, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, $\ldots$ |
$[ ]$ |
270400.eq1 |
270400eq2 |
270400.eq |
270400eq |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{53} \cdot 5^{7} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$272.4834551$ |
$1$ |
|
$0$ |
$704471040$ |
$4.878700$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.63946$ |
$[0, 0, 0, -20800976300, -1248166024482000]$ |
\(y^2=x^3-20800976300x-1248166024482000\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 364.48.0.?, $\ldots$ |
$[(165740831163989582524884024377706167454723153204505594743108155158321316445966044347056223840189979375882532254170140920/784278244421215184396035075730289260797107159616220507879, 54388330343526562664585666624497727466945639342777680693070680561114628169357659086670573734176483527426641057651750380800121913637259031052414416913547530268136876571321646350700/784278244421215184396035075730289260797107159616220507879)]$ |
270400.fx1 |
270400fx2 |
270400.fx |
270400fx |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{53} \cdot 5^{7} \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$16$ |
$2$ |
$0$ |
$704471040$ |
$4.878700$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.63946$ |
$[0, 0, 0, -20800976300, 1248166024482000]$ |
\(y^2=x^3-20800976300x+1248166024482000\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 182.48.0.?, 280.16.0.?, $\ldots$ |
$[ ]$ |
270400.fy1 |
270400fy2 |
270400.fy |
270400fy |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{53} \cdot 5^{7} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$8.698924362$ |
$1$ |
|
$0$ |
$54190080$ |
$3.596226$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.40903$ |
$[0, 0, 0, -123082700, -568122906000]$ |
\(y^2=x^3-123082700x-568122906000\) |
7.8.0.a.1, 28.16.0-7.a.1.4, 40.2.0.a.1, 91.24.0.?, 280.32.0.?, $\ldots$ |
$[(705441230/151, 17296995123200/151)]$ |
414050.bl1 |
414050bl2 |
414050.bl |
414050bl |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5^{7} \cdot 7^{6} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$93139200$ |
$3.529461$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.16890$ |
$[1, -1, 0, -94235192, 380621521216]$ |
\(y^2+xy=x^3-x^2-94235192x+380621521216\) |
7.8.0.a.1, 35.16.0-7.a.1.1, 40.2.0.a.1, 56.16.0-7.a.1.6, 91.24.0.?, $\ldots$ |
$[ ]$ |
414050.ge1 |
414050ge2 |
414050.ge |
414050ge |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{35} \cdot 5^{7} \cdot 7^{6} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$3640$ |
$96$ |
$2$ |
$9.300310794$ |
$1$ |
|
$2$ |
$1210809600$ |
$4.811935$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.35878$ |
$[1, -1, 1, -15925747480, 836177704869147]$ |
\(y^2+xy+y=x^3-x^2-15925747480x+836177704869147\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 455.48.0.?, $\ldots$ |
$[(33039, 18586455)]$ |
486720.be1 |
486720be2 |
486720.be |
486720be |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 3^{6} \cdot 5 \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$45.20619703$ |
$1$ |
|
$0$ |
$939294720$ |
$4.623283$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.10740$ |
$[0, 0, 0, -7488351468, -269603861288112]$ |
\(y^2=x^3-7488351468x-269603861288112\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ |
$[(98578793076084192982426/984681329, 4268971121655754806633436706504704/984681329)]$ |
486720.hi1 |
486720hi2 |
486720.hi |
486720hi |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 3^{6} \cdot 5 \cdot 13^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$939294720$ |
$4.623283$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$6.10740$ |
$[0, 0, 0, -7488351468, 269603861288112]$ |
\(y^2=x^3-7488351468x+269603861288112\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 2184.48.0.?, $\ldots$ |
$[ ]$ |
486720.js1 |
486720js2 |
486720.js |
486720js |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 3^{6} \cdot 5 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$7.418307023$ |
$1$ |
|
$0$ |
$72253440$ |
$3.340813$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$4.93220$ |
$[0, 0, 0, -44309772, 122714547696]$ |
\(y^2=x^3-44309772x+122714547696\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 280.16.0.?, $\ldots$ |
$[(3044430/53, 41032876032/53)]$ |
486720.ps1 |
486720ps2 |
486720.ps |
486720ps |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
\( - 2^{53} \cdot 3^{6} \cdot 5 \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$10920$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$72253440$ |
$3.340813$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$4.93220$ |
$[0, 0, 0, -44309772, -122714547696]$ |
\(y^2=x^3-44309772x-122714547696\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 168.16.0.?, 210.16.0.?, $\ldots$ |
$[ ]$ |
488410.u1 |
488410u2 |
488410.u |
488410u |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2^{35} \cdot 5 \cdot 13^{10} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$61880$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$753392640$ |
$4.450867$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$5.94783$ |
$[1, -1, 0, -3757176344, -95815305679040]$ |
\(y^2+xy=x^3-x^2-3757176344x-95815305679040\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 280.16.0.?, 1547.48.0.?, $\ldots$ |
$[ ]$ |
488410.cj1 |
488410cj2 |
488410.cj |
488410cj |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 13^{2} \cdot 17^{2} \) |
\( - 2^{35} \cdot 5 \cdot 13^{4} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$61880$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$57953280$ |
$3.168392$ |
$-1762712152495281/171798691840$ |
$1.13774$ |
$4.77294$ |
$[1, -1, 1, -22231813, -43606752003]$ |
\(y^2+xy+y=x^3-x^2-22231813x-43606752003\) |
7.8.0.a.1, 40.2.0.a.1, 91.24.0.?, 119.16.0.?, 280.16.0.?, $\ldots$ |
$[ ]$ |