Show commands: SageMath
Rank
The elliptic curves in class 48510da have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 48510da do not have complex multiplication.Modular form 48510.2.a.da
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 48510da
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
48510.cp3 | 48510da1 | \([1, -1, 1, -380813, -90174283]\) | \(71210194441849/165580800\) | \(14201222928076800\) | \([2]\) | \(589824\) | \(1.9799\) | \(\Gamma_0(N)\)-optimal |
48510.cp2 | 48510da2 | \([1, -1, 1, -521933, -17187019]\) | \(183337554283129/104587560000\) | \(8970069326054760000\) | \([2, 2]\) | \(1179648\) | \(2.3265\) | |
48510.cp4 | 48510da3 | \([1, -1, 1, 2071147, -138543163]\) | \(11456208593737991/6725709375000\) | \(-576838004067084375000\) | \([2]\) | \(2359296\) | \(2.6731\) | |
48510.cp1 | 48510da4 | \([1, -1, 1, -5372933, 4773660581]\) | \(200005594092187129/1027287538200\) | \(88106467303053322200\) | \([2]\) | \(2359296\) | \(2.6731\) |