Properties

Label 48400ch
Number of curves $2$
Conductor $48400$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ch1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 48400ch have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48400ch do not have complex multiplication.

Modular form 48400.2.a.ch

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 2 q^{7} + q^{9} - q^{13} + 5 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 48400ch

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48400.cx2 48400ch1 \([0, -1, 0, -1008, 48512]\) \(-121\) \(-937024000000\) \([]\) \(53760\) \(0.97991\) \(\Gamma_0(N)\)-optimal
48400.cx1 48400ch2 \([0, -1, 0, -1453008, -673679488]\) \(-24729001\) \(-13718968384000000\) \([]\) \(591360\) \(2.1789\)