Properties

Label 48400.bb
Number of curves $1$
Conductor $48400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 48400.bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 48400.bb do not have complex multiplication.

Modular form 48400.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{7} - 2 q^{9} - 8 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 48400.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48400.bb1 48400cc1 \([0, -1, 0, -122008, 53046512]\) \(-14641/80\) \(-1097517470720000000\) \([]\) \(608256\) \(2.1457\) \(\Gamma_0(N)\)-optimal