Properties

Label 48.a
Number of curves $6$
Conductor $48$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 48.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
48.a1 48a5 \([0, 1, 0, -384, 2772]\) \(3065617154/9\) \(18432\) \([4]\) \(8\) \(0.047795\)  
48.a2 48a2 \([0, 1, 0, -64, -220]\) \(28756228/3\) \(3072\) \([2]\) \(4\) \(-0.29878\)  
48.a3 48a3 \([0, 1, 0, -24, 36]\) \(1556068/81\) \(82944\) \([2, 4]\) \(4\) \(-0.29878\)  
48.a4 48a1 \([0, 1, 0, -4, -4]\) \(35152/9\) \(2304\) \([2, 2]\) \(2\) \(-0.64535\) \(\Gamma_0(N)\)-optimal
48.a5 48a4 \([0, 1, 0, 1, 0]\) \(2048/3\) \(-48\) \([2]\) \(4\) \(-0.99193\)  
48.a6 48a6 \([0, 1, 0, 16, 180]\) \(207646/6561\) \(-13436928\) \([8]\) \(8\) \(0.047795\)  

Rank

sage: E.rank()
 

The elliptic curves in class 48.a have rank \(0\).

Complex multiplication

The elliptic curves in class 48.a do not have complex multiplication.

Modular form 48.2.a.a

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.