Properties

Degree $4$
Conductor $6912$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes

Related objects

Learn more about

Normalization:  

(not yet available)

Dirichlet series

$L(s, E, \mathrm{sym}^{3})$  = 1  + 0.192·3-s + 1.07·5-s + 0.0370·9-s + 0.657·11-s + 0.938·13-s + 0.206·15-s − 0.856·17-s − 1.06·19-s + 1.30·23-s + 0.912·25-s + 0.00712·27-s − 0.845·29-s − 0.0926·31-s + 0.126·33-s − 1.01·37-s + 0.180·39-s + 1.05·41-s + 0.993·43-s + 0.0397·45-s − 2·49-s − 0.164·51-s + 0.528·53-s + 0.706·55-s − 0.204·57-s + 0.900·59-s + 0.495·61-s + 1.00·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s,E,\mathrm{sym}^{3})=\mathstrut & 6912 ^{s/2} \, \Gamma_{\C}(s+1.5) \, \Gamma_{\C}(s+0.5) \, L(s, E, \mathrm{sym}^{3})\cr =\mathstrut & \, \Lambda(1-{s}, E,\mathrm{sym}^{3}) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6912\)    =    \(2^{8} \cdot 3^{3}\)
Sign: $1$
Primitive: yes
Self-dual: yes
Selberg data: \((4,\ 6912,\ (\ :1.5, 0.5),\ 1)\)

Particular Values

\[L(1/2, E, \mathrm{sym}^{3}) \approx 1.793824591\] \[L(1, E, \mathrm{sym}^{3}) \approx 1.371118964\]

Euler product

\(L(s, E, \mathrm{sym}^{3}) = (1-3^{- s})^{-1}\prod_{p \nmid 48 }\prod_{j=0}^{3} \left(1- \frac{\alpha_p^j\beta_p^{3-j}}{p^{s}} \right)^{-1}\)

Imaginary part of the first few zeros on the critical line

Graph of the $Z$-function along the critical line