Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-1487052x+910837872\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-1487052xz^2+910837872z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1487052x+910837872\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1582, 50176)$ | $1.6024631535494285418579102081$ | $\infty$ |
Integral points
\((436,\pm 18584)\), \((1582,\pm 50176)\)
Invariants
| Conductor: | $N$ | = | \( 479808 \) | = | $2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-147943663282711166976$ | = | $-1 \cdot 2^{29} \cdot 3^{9} \cdot 7^{7} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( -\frac{599077107}{243712} \) | = | $-1 \cdot 2^{-11} \cdot 3^{3} \cdot 7^{-1} \cdot 17^{-1} \cdot 281^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5787556314443540972500998256$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.25787943042430278797485865600$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9312386842610948$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.187929417921149$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.6024631535494285418579102081$ |
|
| Real period: | $\Omega$ | ≈ | $0.17177734520360632912444184595$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $8.8085397217062336460463718769 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.808539722 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.171777 \cdot 1.602463 \cdot 32}{1^2} \\ & \approx 8.808539722\end{aligned}$$
Modular invariants
Modular form 479808.2.a.la
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9732096 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{19}^{*}$ | additive | 1 | 6 | 29 | 11 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $17$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 2143 & 2 \\ 2143 & 3 \end{array}\right),\left(\begin{array}{rr} 2855 & 2 \\ 2854 & 3 \end{array}\right),\left(\begin{array}{rr} 1429 & 2 \\ 1429 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2855 & 0 \end{array}\right),\left(\begin{array}{rr} 409 & 2 \\ 409 & 3 \end{array}\right),\left(\begin{array}{rr} 953 & 2 \\ 953 & 3 \end{array}\right),\left(\begin{array}{rr} 2689 & 2 \\ 2689 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$5821761060864$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 2499 = 3 \cdot 7^{2} \cdot 17 \) |
| $3$ | additive | $2$ | \( 53312 = 2^{6} \cdot 7^{2} \cdot 17 \) |
| $7$ | additive | $32$ | \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \) |
| $17$ | split multiplicative | $18$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 479808la consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 2142a1, its twist by $-56$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.