Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2142.e1 |
2142a1 |
2142.e |
2142a |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$2.378687601$ |
$1$ |
|
$2$ |
$1056$ |
$0.566080$ |
$-599077107/243712$ |
$0.93124$ |
$3.99385$ |
$[1, -1, 0, -474, -5068]$ |
\(y^2+xy=x^3-x^2-474x-5068\) |
2856.2.0.? |
$[(43, 208)]$ |
2142.p1 |
2142l1 |
2142.p |
2142l |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$0.083119736$ |
$1$ |
|
$10$ |
$352$ |
$0.016774$ |
$-599077107/243712$ |
$0.93124$ |
$3.13438$ |
$[1, -1, 1, -53, 205]$ |
\(y^2+xy+y=x^3-x^2-53x+205\) |
2856.2.0.? |
$[(7, 8)]$ |
14994.m1 |
14994g1 |
14994.m |
14994g |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$0.900769932$ |
$1$ |
|
$4$ |
$50688$ |
$1.539036$ |
$-599077107/243712$ |
$0.93124$ |
$4.39984$ |
$[1, -1, 0, -23235, 1784789]$ |
\(y^2+xy=x^3-x^2-23235x+1784789\) |
2856.2.0.? |
$[(79, 622)]$ |
14994.cm1 |
14994bp1 |
14994.cm |
14994bp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$0.276399217$ |
$1$ |
|
$8$ |
$16896$ |
$0.989729$ |
$-599077107/243712$ |
$0.93124$ |
$3.71431$ |
$[1, -1, 1, -2582, -65243]$ |
\(y^2+xy+y=x^3-x^2-2582x-65243\) |
2856.2.0.? |
$[(121, 1115)]$ |
17136.t1 |
17136u1 |
17136.t |
17136u |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{23} \cdot 3^{3} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8448$ |
$0.709921$ |
$-599077107/243712$ |
$0.93124$ |
$3.31902$ |
$[0, 0, 0, -843, -12294]$ |
\(y^2=x^3-843x-12294\) |
2856.2.0.? |
$[ ]$ |
17136.bc1 |
17136s1 |
17136.bc |
17136s |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{23} \cdot 3^{9} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.031013744$ |
$1$ |
|
$4$ |
$25344$ |
$1.259228$ |
$-599077107/243712$ |
$0.93124$ |
$3.99516$ |
$[0, 0, 0, -7587, 331938]$ |
\(y^2=x^3-7587x+331938\) |
2856.2.0.? |
$[(369, 6912)]$ |
36414.s1 |
36414j1 |
36414.s |
36414j |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$304128$ |
$1.982687$ |
$-599077107/243712$ |
$0.93124$ |
$4.53503$ |
$[1, -1, 0, -137040, -25447168]$ |
\(y^2+xy=x^3-x^2-137040x-25447168\) |
2856.2.0.? |
$[ ]$ |
36414.cm1 |
36414bz1 |
36414.cm |
36414bz |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{3} \cdot 7 \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$0.209117446$ |
$1$ |
|
$8$ |
$101376$ |
$1.433380$ |
$-599077107/243712$ |
$0.93124$ |
$3.90741$ |
$[1, -1, 1, -15227, 947563]$ |
\(y^2+xy+y=x^3-x^2-15227x+947563\) |
2856.2.0.? |
$[(13, 860)]$ |
53550.bt1 |
53550e1 |
53550.bt |
53550e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$49280$ |
$0.821492$ |
$-599077107/243712$ |
$0.93124$ |
$3.09465$ |
$[1, -1, 0, -1317, 24341]$ |
\(y^2+xy=x^3-x^2-1317x+24341\) |
2856.2.0.? |
$[ ]$ |
53550.ed1 |
53550cu1 |
53550.ed |
53550cu |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5^{6} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$147840$ |
$1.370798$ |
$-599077107/243712$ |
$0.93124$ |
$3.70004$ |
$[1, -1, 1, -11855, -645353]$ |
\(y^2+xy+y=x^3-x^2-11855x-645353\) |
2856.2.0.? |
$[ ]$ |
68544.bv1 |
68544c1 |
68544.bv |
68544c |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{29} \cdot 3^{9} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$4.028889597$ |
$1$ |
|
$0$ |
$202752$ |
$1.605801$ |
$-599077107/243712$ |
$0.93124$ |
$3.87127$ |
$[0, 0, 0, -30348, -2655504]$ |
\(y^2=x^3-30348x-2655504\) |
2856.2.0.? |
$[(2062/3, 41984/3)]$ |
68544.cg1 |
68544db1 |
68544.cg |
68544db |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{29} \cdot 3^{9} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$3.365396759$ |
$1$ |
|
$2$ |
$202752$ |
$1.605801$ |
$-599077107/243712$ |
$0.93124$ |
$3.87127$ |
$[0, 0, 0, -30348, 2655504]$ |
\(y^2=x^3-30348x+2655504\) |
2856.2.0.? |
$[(-180, 1512)]$ |
68544.ct1 |
68544g1 |
68544.ct |
68544g |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{29} \cdot 3^{3} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$67584$ |
$1.056494$ |
$-599077107/243712$ |
$0.93124$ |
$3.27930$ |
$[0, 0, 0, -3372, 98352]$ |
\(y^2=x^3-3372x+98352\) |
2856.2.0.? |
$[ ]$ |
68544.de1 |
68544df1 |
68544.de |
68544df |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) |
\( - 2^{29} \cdot 3^{3} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$67584$ |
$1.056494$ |
$-599077107/243712$ |
$0.93124$ |
$3.27930$ |
$[0, 0, 0, -3372, -98352]$ |
\(y^2=x^3-3372x-98352\) |
2856.2.0.? |
$[ ]$ |
119952.cs1 |
119952cz1 |
119952.cs |
119952cz |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{23} \cdot 3^{9} \cdot 7^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1216512$ |
$2.232182$ |
$-599077107/243712$ |
$0.93124$ |
$4.32875$ |
$[0, 0, 0, -371763, -113854734]$ |
\(y^2=x^3-371763x-113854734\) |
2856.2.0.? |
$[ ]$ |
119952.en1 |
119952ci1 |
119952.en |
119952ci |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{23} \cdot 3^{3} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$2.443610027$ |
$1$ |
|
$2$ |
$405504$ |
$1.682877$ |
$-599077107/243712$ |
$0.93124$ |
$3.76511$ |
$[0, 0, 0, -41307, 4216842]$ |
\(y^2=x^3-41307x+4216842\) |
2856.2.0.? |
$[(231, 2646)]$ |
254898.cl1 |
254898cl1 |
254898.cl |
254898cl |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{9} \cdot 7^{7} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14598144$ |
$2.955643$ |
$-599077107/243712$ |
$0.93124$ |
$4.76402$ |
$[1, -1, 0, -6714969, 8741808557]$ |
\(y^2+xy=x^3-x^2-6714969x+8741808557\) |
2856.2.0.? |
$[ ]$ |
254898.fu1 |
254898fu1 |
254898.fu |
254898fu |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{11} \cdot 3^{3} \cdot 7^{7} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.803859770$ |
$1$ |
|
$4$ |
$4866048$ |
$2.406334$ |
$-599077107/243712$ |
$0.93124$ |
$4.23451$ |
$[1, -1, 1, -746108, -323521985]$ |
\(y^2+xy+y=x^3-x^2-746108x-323521985\) |
2856.2.0.? |
$[(7765, 675845)]$ |
259182.bj1 |
259182bj1 |
259182.bj |
259182bj |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7 \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$10.14048926$ |
$1$ |
|
$0$ |
$503360$ |
$1.215721$ |
$-599077107/243712$ |
$0.93124$ |
$3.08268$ |
$[1, -1, 0, -6375, -254083]$ |
\(y^2+xy=x^3-x^2-6375x-254083\) |
2856.2.0.? |
$[(38053/11, 6929942/11)]$ |
259182.fc1 |
259182fc1 |
259182.fc |
259182fc |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \cdot 11^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.908900500$ |
$1$ |
|
$2$ |
$1510080$ |
$1.765028$ |
$-599077107/243712$ |
$0.93124$ |
$3.61148$ |
$[1, -1, 1, -57377, 6917617]$ |
\(y^2+xy+y=x^3-x^2-57377x+6917617\) |
2856.2.0.? |
$[(151, 1220)]$ |
291312.cd1 |
291312cd1 |
291312.cd |
291312cd |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{23} \cdot 3^{9} \cdot 7 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7299072$ |
$2.675835$ |
$-599077107/243712$ |
$0.93124$ |
$4.44660$ |
$[0, 0, 0, -2192643, 1630811394]$ |
\(y^2=x^3-2192643x+1630811394\) |
2856.2.0.? |
$[ ]$ |
291312.do1 |
291312do1 |
291312.do |
291312do |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7 \cdot 17^{2} \) |
\( - 2^{23} \cdot 3^{3} \cdot 7 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2433024$ |
$2.126526$ |
$-599077107/243712$ |
$0.93124$ |
$3.92271$ |
$[0, 0, 0, -243627, -60400422]$ |
\(y^2=x^3-243627x-60400422\) |
2856.2.0.? |
$[ ]$ |
361998.bm1 |
361998bm1 |
361998.bm |
361998bm |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 7 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$5.338016317$ |
$1$ |
|
$0$ |
$789888$ |
$1.299248$ |
$-599077107/243712$ |
$0.93124$ |
$3.08052$ |
$[1, -1, 0, -8904, 424256]$ |
\(y^2+xy=x^3-x^2-8904x+424256\) |
2856.2.0.? |
$[(199/2, 2363/2)]$ |
361998.cx1 |
361998cx1 |
361998.cx |
361998cx |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 7 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$4.196056988$ |
$1$ |
|
$2$ |
$2369664$ |
$1.848555$ |
$-599077107/243712$ |
$0.93124$ |
$3.59552$ |
$[1, -1, 1, -80138, -11374775]$ |
\(y^2+xy+y=x^3-x^2-80138x-11374775\) |
2856.2.0.? |
$[(475, 7349)]$ |
374850.dd1 |
374850dd1 |
374850.dd |
374850dd |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 5^{6} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$10.57103400$ |
$1$ |
|
$0$ |
$2365440$ |
$1.794447$ |
$-599077107/243712$ |
$0.93124$ |
$3.53516$ |
$[1, -1, 0, -64542, -8219884]$ |
\(y^2+xy=x^3-x^2-64542x-8219884\) |
2856.2.0.? |
$[(446707/13, 294166573/13)]$ |
374850.mb1 |
374850mb1 |
374850.mb |
374850mb |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5^{6} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.313695185$ |
$1$ |
|
$4$ |
$7096320$ |
$2.343754$ |
$-599077107/243712$ |
$0.93124$ |
$4.04876$ |
$[1, -1, 1, -580880, 222517747]$ |
\(y^2+xy+y=x^3-x^2-580880x+222517747\) |
2856.2.0.? |
$[(205, 10481)]$ |
428400.de1 |
428400de1 |
428400.de |
428400de |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 7 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$7.074934255$ |
$1$ |
|
$2$ |
$3548160$ |
$2.063946$ |
$-599077107/243712$ |
$0.93124$ |
$3.74814$ |
$[0, 0, 0, -189675, 41492250]$ |
\(y^2=x^3-189675x+41492250\) |
2856.2.0.? |
$[(12159, 1339902)]$ |
428400.et1 |
428400et1 |
428400.et |
428400et |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{6} \cdot 7 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1182720$ |
$1.514639$ |
$-599077107/243712$ |
$0.93124$ |
$3.23983$ |
$[0, 0, 0, -21075, -1536750]$ |
\(y^2=x^3-21075x-1536750\) |
2856.2.0.? |
$[ ]$ |
479808.gq1 |
479808gq1 |
479808.gq |
479808gq |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{29} \cdot 3^{3} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.436400878$ |
$1$ |
|
$4$ |
$3244032$ |
$2.029449$ |
$-599077107/243712$ |
$0.93124$ |
$3.68402$ |
$[0, 0, 0, -165228, 33734736]$ |
\(y^2=x^3-165228x+33734736\) |
2856.2.0.? |
$[(186, 3072)]$ |
479808.hc1 |
479808hc1 |
479808.hc |
479808hc |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{29} \cdot 3^{3} \cdot 7^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3244032$ |
$2.029449$ |
$-599077107/243712$ |
$0.93124$ |
$3.68402$ |
$[0, 0, 0, -165228, -33734736]$ |
\(y^2=x^3-165228x-33734736\) |
2856.2.0.? |
$[ ]$ |
479808.la1 |
479808la1 |
479808.la |
479808la |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{29} \cdot 3^{9} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1.602463153$ |
$1$ |
|
$4$ |
$9732096$ |
$2.578754$ |
$-599077107/243712$ |
$0.93124$ |
$4.18793$ |
$[0, 0, 0, -1487052, 910837872]$ |
\(y^2=x^3-1487052x+910837872\) |
2856.2.0.? |
$[(1582, 50176)]$ |
479808.lo1 |
479808lo1 |
479808.lo |
479808lo |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) |
\( - 2^{29} \cdot 3^{9} \cdot 7^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2856$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9732096$ |
$2.578754$ |
$-599077107/243712$ |
$0.93124$ |
$4.18793$ |
$[0, 0, 0, -1487052, -910837872]$ |
\(y^2=x^3-1487052x-910837872\) |
2856.2.0.? |
$[ ]$ |