Properties

Label 47808.y
Number of curves $1$
Conductor $47808$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 47808.y1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(83\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47808.y do not have complex multiplication.

Modular form 47808.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 3 q^{11} - 2 q^{13} - 4 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 47808.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47808.y1 47808k1 \([0, 0, 0, 852, -4304]\) \(357911/249\) \(-47584641024\) \([]\) \(32768\) \(0.73736\) \(\Gamma_0(N)\)-optimal