Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-32181715\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-32181715z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-32181715\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2621700969919/1077743241, 4240223233623816362/35381232858789)$ | $28.674990646565587047204864240$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 476100 \) | = | $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-447406321107409200$ | = | $-1 \cdot 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 23^{10} $ |
|
| j-invariant: | $j$ | = | \( 0 \) | = | $0$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[(1+\sqrt{-3})/2]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0657362026056127491037734026$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3211174284280379149898691958$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.678998986237241$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $28.674990646565587047204864240$ |
|
| Real period: | $\Omega$ | ≈ | $0.13617483267094972472691982264$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.8096241062742345479893594996 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.809624106 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.136175 \cdot 28.674991 \cdot 2}{1^2} \\ & \approx 7.809624106\end{aligned}$$
Modular invariants
Modular form 476100.2.a.k
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4530816 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
| $23$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 39675 = 3 \cdot 5^{2} \cdot 23^{2} \) |
| $3$ | additive | $6$ | \( 52900 = 2^{2} \cdot 5^{2} \cdot 23^{2} \) |
| $5$ | additive | $10$ | \( 19044 = 2^{2} \cdot 3^{2} \cdot 23^{2} \) |
| $23$ | additive | $90$ | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 476100k
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 476100de1, its twist by $-23$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $-1150000$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.