Properties

Label 47600.y
Number of curves $4$
Conductor $47600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 47600.y have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47600.y do not have complex multiplication.

Modular form 47600.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} - 3 q^{9} + 2 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 47600.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47600.y1 47600w4 \([0, 0, 0, -211475, 37415250]\) \(16342588257633/8185058\) \(523843712000000\) \([2]\) \(196608\) \(1.7770\)  
47600.y2 47600w2 \([0, 0, 0, -15475, 371250]\) \(6403769793/2775556\) \(177635584000000\) \([2, 2]\) \(98304\) \(1.4304\)  
47600.y3 47600w1 \([0, 0, 0, -7475, -244750]\) \(721734273/13328\) \(852992000000\) \([2]\) \(49152\) \(1.0838\) \(\Gamma_0(N)\)-optimal
47600.y4 47600w3 \([0, 0, 0, 52525, 2751250]\) \(250404380127/196003234\) \(-12544206976000000\) \([2]\) \(196608\) \(1.7770\)