Properties

Label 46818.k
Number of curves $4$
Conductor $46818$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 46818.k have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 46818.k do not have complex multiplication.

Modular form 46818.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{7} + q^{8} + 3 q^{11} + 2 q^{13} - 2 q^{14} + q^{16} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 46818.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46818.k1 46818h4 \([1, -1, 1, -2801765, -1804377059]\) \(-189613868625/128\) \(-1641944807286912\) \([]\) \(635040\) \(2.2353\)  
46818.k2 46818h3 \([1, -1, 1, -27365, -3532515]\) \(-1159088625/2097152\) \(-4100232239382528\) \([]\) \(211680\) \(1.6860\)  
46818.k3 46818h1 \([1, -1, 1, -1355, 20451]\) \(-140625/8\) \(-15641144712\) \([]\) \(30240\) \(0.71302\) \(\Gamma_0(N)\)-optimal
46818.k4 46818h2 \([1, -1, 1, 7315, 35479]\) \(3375/2\) \(-25655387613858\) \([]\) \(90720\) \(1.2623\)