Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+148259021x+1256313832437\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+148259021xz^2+1256313832437z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+2372144333x+80406457420302\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3721501281385665580467489400057522659773277/72940463277243133586432022477596682256, 7397841108626976939161091172580962012894656852012431723315841921/622949406030961666238627186132355567505013078216819372096)$ | $94.565984621946606919515210843$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 462722 \) | = | $2 \cdot 13^{2} \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-890442318442943764920795776$ | = | $-1 \cdot 2^{7} \cdot 13^{4} \cdot 37^{13} $ |
|
j-invariant: | $j$ | = | \( \frac{4918167786495951}{12151280273024} \) | = | $2^{-7} \cdot 3^{3} \cdot 13^{2} \cdot 37^{-7} \cdot 10253^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8550028950753447816557517861$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1945608195993869807872081367$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1290598435864923$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.307952349675753$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $94.565984621946606919515210843$ |
|
Real period: | $\Omega$ | ≈ | $0.034820217017410179959645539831$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.5856162140025092513607685868 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.585616214 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.034820 \cdot 94.565985 \cdot 2}{1^2} \\ & \approx 6.585616214\end{aligned}$$
Modular invariants
Modular form 462722.2.a.e
For more coefficients, see the Downloads section to the right.
Modular degree: | 167311872 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$13$ | $1$ | $IV$ | additive | 1 | 2 | 4 | 0 |
$37$ | $2$ | $I_{7}^{*}$ | additive | 1 | 2 | 13 | 7 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B | 7.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 26936 = 2^{3} \cdot 7 \cdot 13 \cdot 37 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 8 & 7 \\ 13461 & 26930 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9456 & 26929 \\ 15295 & 6 \end{array}\right),\left(\begin{array}{rr} 20731 & 2 \\ 11942 & 26847 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 6737 & 23096 \\ 13454 & 14393 \end{array}\right),\left(\begin{array}{rr} 8 & 7 \\ 6727 & 26930 \end{array}\right),\left(\begin{array}{rr} 26923 & 14 \\ 26922 & 15 \end{array}\right)$.
The torsion field $K:=\Q(E[26936])$ is a degree-$1540404266139648$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/26936\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 231361 = 13^{2} \cdot 37^{2} \) |
$7$ | good | $2$ | \( 231361 = 13^{2} \cdot 37^{2} \) |
$13$ | additive | $62$ | \( 2738 = 2 \cdot 37^{2} \) |
$37$ | additive | $722$ | \( 338 = 2 \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 462722e
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 12506d2, its twist by $37$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.